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FOREWORD

The theory of the flow of gas in tubes in the presence of heat
transfer is of great importance in several branches of heat engineer-
ing. The problem must be studied in order to solve many important
technical problems concerning gas turbines, jet engines, nuclear re-
actors, and so on. Here I consider some new methods of solving for the
flow of gas in tubes in the presence of heat transfer; one- and two-

dimensional models are used.

In sections 1-4 of chapter I deal briefly with the results
from the one-dimensional theory theat are required in later chapters.
The one-dimensional theory is to be found expounded in more detail in
specialized works such as [1, 3, 5, 39].

Chapters IT1 and III deal in more detail with planar flow be-
tween two parallel walls having symmetrical heating.

Chapter IT also gives the method of calculation for a circular
tube.

Chapter IV presents some results of the calculations.

In every case where no special comment is made, it 1s assumed
that heat enters the gas; the methods given here cannot, in general,
be used if the gas loses heat.

Relationships for the axis of the tube are used here together
with integral relationships, in which we have a difference from exist-
ing integral methods. This makes possible a more detailed study of
the behavior of the velocity and temperature profiles; here the
ordinary power-law profiles are characterized not only by the powers but
also by the curvature at the axis. Calculations carried out in this way
have enabled me to derive some aspects of the behavior of the velocity
and temperature profiles that are essentially undetectable by the in-
tegral methods.

The MKS system of units (GOST 9867-61) is used; the basic
quantities are the meter, the kilogram (mass), the second, and the
0

K.

It is assumed that the reader is acquainted with engineering
thermodynamics and with the principles of boundary layer theory.

A1l the calculations are for air, on the assumption that k(the
isentropy constant) and the heat capacity cP are independent of



temperature.

The calculations in chapter IV were performed with an electronic
digital computer at the Institute of Cybernetics, Academy of Sciences,
Ukrainian SSR. For this I am indebted to the following of my colleagues
there: V. Ye. Shamanskiy, Ye. L. Yushchenko, V. I. Khil'chenko, and
I. S. Markova.

I am also indebted to N. I. Pol'skiy, the editor, and to M. M.
Sidlyar and Ye. P. Dyban, who read the manuscripts, as well as to 0. A.
Gerashchenko (Institute of Thermal Power, Academy of Sciences, Ukrainian
SSR) for valuable comments.
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NOMENCIATURE

Subscripts

initial section
final section

wall of channel
axis of channel

mean-mass quantities

Quantities
speed of sound, m/sec
critical speed, m/sec
thermal capacity at constant pressure, J/kg—oK
thermal capacity at constant volume, J/kg-K

hydraulic diameter of channel, m

cross-sectional area of channel (mg) in chapter I; a parameter
in chapters II-IV

gas-dynamic function (reduced flow)

mass flow of gas, kg/sec

half the width of a plane-parallel channel, m
enthalpy, J/kg

isentropy parameter

length of channel, m

form parameter of the retardation-temperature profile
Mach number

velocity coefficient (M, = w/a*)

form parameter of velocity profile

power, W

pressure, N/m?

retardation pressure, N/m2

Prandtl number

amount of heat, J/kg



Re
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St
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specific thermal flux, J/mg-sec

gas constant, J/kg—oK

Reynolds number

heated perimeter, m

wetted perimeter, m

Stanton number

temperature, °K

lengthwise velocity component, m/sec
transverse velocity component, m/sec

ratio of flow velocity to limiting velocity
velocity of one-dimensional flow, m/sec

limiting velocity m/sec
lengthwise coordinate, m
transverse coordinate, m
gas-dynamic Tunction

heat-transfer factor, J/mg-sec-oK

power in the relation of viscosity to temperature

thickness of viscous sublayer, m

Dorodnitsyn's variable, m

ratio of T to the value of this at the axis (H = VM)

coefficient of turbulent transfer, N-sec/m?

thermal conductivity, J/m-sec-°K
dynamic viscosity, N-sec/ﬁ?
kinetic viscosity, m?/sec
gas-dynamic function

retardation temperature, °K

local angle of widening of channel
gas-dynamic function

resistance coefficient

density, kg/m5

gas-dynamic function



CHAPTER I

ONE-DIMENSIONAL THEORY

Here I consider steady-state flows in channels subject to loss
and to heat transfer between walls and gas. It is in every case assum-
ed that the gas does no external work. The speed of the gas at the
inlet (in the initial section) is taken to be subsonic if no special
mention is made. The gas 1s assumed perfect, so at any point the
pressure p, density p, and temperature T are related by the equation

of state:

p = pRT. (1.1)

The mass of gas flowing through the cross-section (area F) in
a second is G = owF, in which w is the velocity. G is constant at
all points along the channel in the steady state¥:

G = pwF = const. (1.2)

This is called the equation of continuity.

To (1.1) and (1.2) we must add relations for the energy con-
version and for the momentum.

The energy equation is given by thermodynamics as

dQ:di+d<—W§> , (1.3)

in which dQ is the heat entering the gas from outside, di and a(w/2)
being respectively the changes in enthalpy and kinetic energy for an

¥Here and subsequently it is assumed that there are no sources or
sinks for the gas.



element of the gas¥*.

The Ox axis lies along the midline of the channel downstream;
i =c¢ T for a perfect gas, and we assume that the thermal capacity cp

is not dependent on T. Then instead of (1.3) we have

a9 _. ¢ (rs ). (1.%)
dx p dx 2c
P
We introduce the symbols
S (1.5
Sh dx
2
2c
iy

in which S is the heated perimeter.
h

We substitute (1.5) and (1.6) into (1.k) to get

ae Sh

— = 2 q. (1.7)

dx Ge
1Y

Here q is the amount of heat entering the gas every second through
one square meter of the heated surface; it is called the specific heat

*Here i and Q relate to 1 kg of gas.



flux.

Also, ® is called the retardation temperature. No heat transfer
(¢ = 0) 1mplles ® = constant from (1.7), i.e., from (1.6)

This temperature is thus reached when the velocity falls to
zero in a flow that is isolated as far as energy is concerned.

An influx of heat (g > 0) causes this temperature to increase
the flow (d8/dax > 0), while heat loss (g < 0) implies a fall
(d®/§x <0).

The system represented by (1.1), (1.2), (1.6), and (1.7) is
closed by adding the equation for the momentum (the general Bernoulli

equation):
~—4+w—+(—=0, (1.8)

which relates the pressure p to the speed w; here D is the hycraulic
diameter of the channel:

D=—. (1.9)

The quantity C is an integral characteristic dependent mainly
on Re, apart from several other factors. There is little experimental
evidence on the precise relation of { to heat-transfer conditions,
surface roughness, and so on, so it is often assumed (especially for
rough calculatlons) that { is constant at all points, some mean value
being taken.



The system consisting of (1.1), (1.2), (1.6), (1.7), and (1.8)
contains the five unknowns T, p, p w, and ®. It is assumed that G
and ¢ are known constants.

b

Also, it is assumed that q, the cross-sectional area F, and

the heated and wetted perimeters S and S8 are known functions of x¥,
h w
so (1.7) gives directly ® for any point in the channel as

gS dx + © ., (1.10)

@ =_1_
Ge h c

P

The remaining four equations are conveniently reduced to one
in the unknown

2 W2
M =5 .

o

This M is the Mach number. For a perfect gas

a = kRT, (1.11)

in which

¥The quantity actually given is often To (wall temperature) rather

than q. Then we need to know a further experimental coefficient in
the one-dimensional theory apart from £, namely the heat-transfer
factor @, which is related to g by q = (T - @),
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We use

to find that

In place of (1.6) we have

and so from (1.12)

°p
k=",
c
v
2 w
M"—'—-
kRT
c -c¢c =R,
P v
k
c=——_—R.
P k-1
K - 1w
®=T+ —,
2%k R
@ k~1
=1 4+ M2-
T 2

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)
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Teking logarithms of (1.1) and differentiating, we have

1dp 14T 14dp
—_—— - — - —, (1.17)

Similarly from (1.2)

L. = (1.18)

(1.12) gives

14T 2dw 1 ame
T =TT -5 T (1.19)
T dx w dx M dx

Substituting (1.18) and (1.19) into (1.17), we have

2
Ldp 1dw 1 aM 1 dF
T =TT T T (1.20)
p dx wdx M dx F dx
Substituting (1.20) into (1.16) we have
2
1+KkM° aw 1 aM© (M~ 1 aF
—_——— ¢ -~ —— =0, (1.21)
w dx M2 dx 2D F dx

From (1.12) and (1.15) we have
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2 Me
W = k_R@ »
-1
1+ M2
2
S0
2
@
v 1 &8, . (1.22)
wdx 20 dx 2 <ﬁ + M?) dx

This value for (@w/dx)/w is substituted into (1.21) to give

2
1 - a1+ a8 W 1dF
— 4+ — - == (1.23)
2ME<1+k'lM2> dx 28 dx 2D Fadx

T is found from (1.15) after this equation has been integrated;
w is found from (1.12), and p and p from (1.1) and (1.2) as

p=9R—T, p=—2 . (1.24)
wF RT

A scale of measurement for the speed sometimes more convenient
than the speed of sound is the critical speed, which is the flow velocity
equal to the local speed of sound, which is usually denoted by a,.

From (1.1) and (1.1L4) we have

Putting here w = a = a_, we have
*

T I T T TS TR T  ='"|{ g ™~ -
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2
a” = £ g, (1.25)
*

k+ 1

The critical speed is constant in a flow isolated as regards
energy. In general, this speed varies from one cross-section to another
in accordance with the variation in ®, as (1.25) shows.

We introduce the symbol

2
M =¥ _EFx1lw | (1.26)

T
- =1 - M 1.2
o (1.27)

From (1.15) and (1.27) we have the relation of M to M*:

o
2 2 Mie ) (1.28)
K

K ~ 1 2

2 2 2 ® o 1~ M,
1-M, aM, 1+Ma Tk My k+1  dF
= — — = —
EMi dx 28 dx k+1 D F dx

(1.29)



1k

T is determined from (1.27) after (1.29) has been integrated;
w is found from (1.26), and the pressure and demsity from (1.24).

It is often convenient to use the retardation pressure as well
as the retardation temperature; this is given by the adiabatic equa-

tion

k
P ® “k-1

so from (1.15)

P k_

= = k -1 k-1

(1 + ——"M2.> , (1.30)

P 2

and from (1.25)
k
2 k-1 k-1
P_<1-k+1M*> . (1.31)

Pressure p takes the value P when the speed of an isentropic
flow falls to zero,

The functions

M = p (1.32)

I=r7 (1.33)
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are respectively the ratio of the temperature to @ and the ratio of the
pressure to P; these and some other functions (vhich are called gas-
dynamic ones) have been tabulated, which often facilitates calculations¥,

We introduce two further gas-dynamic functions that will be
needed subsequently; they are convenient in calculations relating to
the flow rate G.

From (1.24)

¢ = vE |
RT

so, from (1.26), (1.27), and (1.32)

Zx _ p M (1.34)
-

(k + 1RV @

Expressing p in terms of P, we have from (1.31)-(1.33) that

- —= B I (1.35)

(x+1)R VO 7

H | Q2

(1.35) shows that o/F (flow per unit area) has & maximum for M, =

= 1 for any fixed P and ®; this is termed the critical flow and is denoted
by (G/F)*. From (1.35)

¥Tables of these functions are to be found in [14, 16], for example.
Appendix ITI gives tables of these functions for air (k = 1.4).
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l

<}{> V/:;::; R J"_ k+;> )

The ratio
L
2

L
AL -G EOT o

is called the referred (reduced) flow rate¥.

Then from (1.35) we have

PF
G=J =28, (1.37)

Je

in which
k+l

<:k+l

For air (k = 1.4, R = 288 J/kg-°K) we have j = 0.04Ok.

The flow rate is expressed in terms of P in (1.37); it is often
desirable to have it expressed in terms of p.

We introduce the function

*This is usually denoted by q in gas dynamics, but here q represents
the specific heat flux.
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1

g k+ INE-1 Ma
Y = E = (‘-——Z ) REEE— (1'38)

k-1

1- =
k+1
and get from (1.34) that

G=J j’% Y. (1.39)

Equations (1.23) and (1.29) enable us to establish the effects
of friction, channel configuration, and heat inflow on M and M*.

Analogous equations for the velocity, temperature, pressure,
and density are also of value. From (1.22) and (1.23) we have

1—M2§lr=2+(k-l)M2C@+gkf_’f_2_idf, (1.k0)
v dx 20 ax 2D F ax

From (1.16) and (1.40)

i G = T PR EXCLL S
ax 20 dx F dx

= 2D
(1.41)
From (1.18) and (1.k0)
1-1v12<}_;_:=_2+(k-1)Med_®_gkf_ Nf.d_l:. (1.42)
o ax 20 ax 2D F dx

From (1.10) and (1.k0)
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—_— —+
T dx 20 ax

1 -0 )
aT (l_kMQ)2+(k 1)»42a@

+(k_1)Me<-g_klf+_l_d£ . (1.43)

To conclude, we find the relation between the change in p, the
rate of influx of heat, and {. From (1.30)

ldp 1dP X 1 ane
Sdx Pax 2 .
p k.'l 2
1+ M
o

This value of (dp/dx)/p is substituted into (1.16); (1.22) is used
to give

WE 14 g>. (1.4)

This shows that P decreases as x increases 1in adiatic processes
(a8/dx = 0) and in ones involving influx of heat (d@/dx > 0).

The rate of decrease of P for a given M is dependent on the
heat influx (dC/dx) and the rate of production of heat by friction

(£).

This means that the variation in P wmay serve as a measure of
the loss in processes of heat influx.
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2. Qualitative Analysis: Principle of Reversal of
Action and Flow Crisis

The following relationships are derived by a qualitative dis-
cussion of the equations. Firstly, T/® = 0, so (1.27) implies that

e < B+ 1
3 k-l’

2 2
50 W < Wo = ag(k + 1)/(x - 1), in which w, is the limiting velocity.

1
From (1.25) we have

L

wi - 2k Rg. (1.45)
k - 1

The speed at any point cannot be higher than the wl corre=-

sponding to that point.

The limiting speed varies from section to section when there
is heat transfer, on account of the change in ®, as in the case of
the critical speed; Wy is constant in a flow isolated from energy

transfer and serves (together with the critical speed) as a convenient
scale for the speeds.

We put
v = (1.46)

ve = B 1ae, (1.47)
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(1.27) and (1.47) imply that V- 1 for T— O, sSo it is impossible
to attain the limiting speed.

V2 = 1 corresponds to Mg = (k + 1)/(k - 1) > 1, so it is possible
to approach the limiting speed only when the flow speed exceeds the local
speed of sound. The transition through the speed of sound can be examined
from (1.23). This shows that friction (¢ > 0), heat influx (de@/dx > 0),
and reduction in cross-section (dF/dx < O) cause M to rise if M < 1, where-
as these factors have the opposite effect if M >l. Similar deductions can
be drawn sbout the speed, density, pressure, and temperature from (1.40)-
(1L.43). This is known as the principle of reversal of action [4].

Now we consider in more detail the effects associated with the two types
of variation. We assume that M < 1 and that the over-all action is positive

near the inlet:

L+ wf de , kwf 1 aF
— = = — >0 (1.18)
20 dx 2D F dx

(1.23) implies that M must increase with x near the inlet.

There are several possible cases, which differ as regards the later
behavior of the over-all action.

A. The over-all action becomes zero at x = x', after which it becomes
and remains negative.

If M' = M'x:x'< 1, we have M maximal (M') at x = x', there being a de-
crease for larger x (curve 1 of Fig. 1).
B. M=1at x=x", and the over-all action becomes and remains negative.

Then M > 1 for x > x", so the speed increases from subsonic to supersonic (curve
2 of Fig. 1).

de 2 ar
2L E 2T, (1.19)
dx

C. If the over-all action is everywhere positive, we have M- 1 possible
only for dM/dx - + ® (curve 3 of Fig. 1).

If M- 1 at a finite distance x = x" from the input, the flow cannot extend
continuously in the channel; if M were subsequently to decrease, we would have

aM2/dx < 0, so we would have M- < 1, and so
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1 - M? > 0. If M were subsequently to increase, we would have

dMe/d.x >0, w > 1, and 1 - M2 < 0. In both cases (1 - 1\42)(6.1\'12/dx)

is negative, although the over-all action is positive, which from
(1.23) conflicts with the assumed condition.

This impossibility of continuous extension is termed flow
crisis.

(1.40)-(1.43) show that dw/dx - + < as well as dM/dx — + =
when the crisis occurs, and also dp/dx - - @, dp/dx — -~ =, and
aT/dx - - .

This means that there is a very rapid rise in M and in the
speed near the crisis point, together with very rapid falls in
pressure, density, and temperature. These effects have repeatedly
been observed for gas flows in tubes [6,31,56].

On this basis we assume that crisis can occur in channels of
fixed cross-~section subject to heat influx.

M d
2
——_
L~
M=1 yas
A 1
4 M 1
_ﬁééffl ] ISR
= ok T
MM, =T 1 .
I 3 1
1 ] 1
A x! X" x-
Fig. 1.

Variation in M along the channel
for various types of over-all
action: 1) speed nowhere equals or
exceeds that of sound, over-all
action changes sign at x = x’;

2) speed attains local speed of
sound at x = x”, where over-all
action changes sign; 3) over-all
action always positive, crisis
occurs at X = X .
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We now consider some particular cases.

3. Adiabatic Flows

Subsonic-Supersonic Transition and Condition for Crisis

An adiabatic flow implies no heat transfer between gas and
wall (d@/dx = 0).

(1.48) implies that a subsonic flow will accelerate if

s0 the channel may narrow or may widen gradually.

The point at which the speed of sound is reached is of interest;
(1.49) gives that at this point

The local angle of divergence of the channel [9] is

1 ar
tan — = — —,

2 S dx

W

in which SW is the wetted perimeter.
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By definition, the hydraulic diameter is

i
D=2
s
W
SO
D ar
tans31= —_——,
2 B dx

and at the point of transition we must have

ki
tan-f-= —E °
2 B

[ is usually fairly small, so the transition occurs in a part
of the channel where the widening is rather gradual.

The condition for onset of crisis in a subsonic flow is as
follows. The condition (section 2) is that we have at some finite
distance

wf 1 aF

g—-——2>0
2D F dx

for M close to one, including M = 1.

Flow in a Channel of Comnstant Cross-Section

In this case dF/dx = 0, so the above inequality is bound to
apply (since { > 0), and crisis can occur.
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We put in (1.29) that

dF 4o
~—=—= 0, [ = constant,
dx dx

and after integration get

x
X (M*i) - x (M) = ¢ D’ (1.50)
in which
k 1 1 2
x (M) = =2 (M) (1.51)
2k N R

Flow with M = constant

In this case ® = constant and M = constant together; (1.25)
shows that we can have M = constant if

il
C —

o 2

m o
g8

or, in terms of the local angle of taper (widening),
1
tan2-= - cnf,
2 8

so the channel must widen slowly for such a flow.
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4, Flows with Heat Transfer

Flow with M = constant and F = constant

Such a flow can occur [28]; (1.23) readily shows that

1a ¢ _wf

® dx B D1+ KME

so0 with { = constant we have

¢ we
Dy 4 wf ),

®=®i exp(—

so ® -0 for x — <,

Now (1.15) gives T/® = constant, so T — O and hence, from (1.14),
w = 0. In this case the flow speed and the limiting speed both ap-
proach zero.

Isothermal Flow in a Channel of Constant Cross-Section

Here 4T/dx = dF/dx = 0, so from (1.43) we have

2+ (k l)M2d® k-1 th
(1 - wf) == ¢ —.
20 dx 2 D

Then for M? < l/k the gas must be heated to keep the flow
isothermal (d@/dx > 0); (1.23) indicates that M then increases, and
the heat influx must increase with M, with finally d@/dx — ® as
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M? - L/k, s0 g - .
This means that an isothermal flow with F = constant is pos-

2
sible only for M < 1/k [25,27].
Flow in a Channel of Constant Cross-Section without Loss

This case (£ = 0) is of some theoretical interest; (1.29) is
then readily integrated to give

2
®f . Mep @ 1+ My, 2
<_—i_>§=0— <M*i><1+M21> . (1.52)

®f/®' is the degree of heating (degree of increase in the retardation
i

temperature); (1.52) shows that it is dependent only on M*i and. M#f

for { = 0, so Myp (exit value) is uniquely determined by My s (input

value) and by C%/®i no matter what the mode of influx of heat.

Flow in a Channel of Constant Cross-Section with Loss, and
Influx of Heat at Inlet and Outlet

The effects become more complicated when frictional loss
occurs, partly because M*f is now dependent on { as well as on M*i

and ®f/®i’ and partly because M*f is dependent on the mode of in-

flux, as (1.29) shows. The effect of the latter may be evaluated
by reference to two limiting cases: influx of heat at inlet and

outlet.
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We assume that the channel is extended for some distance beyond
the inlet and outlet sections, but in these idealized parts there is
no friction. We say that there is heat influx at the inlet if all
the heat enters in the idealized section preceding the inlet; and
similarly for the outlet.

Heat influx at the inlet causes My to rise from M*i to M;i,

the latter being related to the degree of heating and to M*i by

(1.52):

2
-G ( +M,2>- (1-53)

The subsequent flow involves no heat transfer, so from (1.50)

x () - x () = ¢l (1.54)

in which L is the length of the channel referred to the hydraulic
diameter.

Heat influx at the outlet causes the speed to rise adiabatically

from M, . to M; in accordance with
1 il

x (M) = % () = CL (1.55)

Further increase in speed results solely from the influx of heat,
for which

2=<%>2<1+ M*f>2 (1.56)
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Figure 2 shows ® f/ ®i as a function of M%f for the above two

cases for My; = 0.2 and gf. = 1. The difference between the two is

considerable, and it increases with M*f.

®p
®

i

RERYS

02 04 06 08 0

Fig. 2.
Relation of ®f/ ®i for a channel

of constant cross-section to
M*f for M*i = 0.2 and L = 1;

heat influx at: 1) inlet;
2) outlet.

Figure 2 shows that influx at the inlet may give M*f much

greater than that for influx at the outlet for the given gi and M*i'
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For instance, for C}/®. = 4.85 we have M, 88 unity in the first
l i

case but lesg than 0.6 in the second; the reason is as follows. In
the first case the friction begins to have an effect at the fairly

high My resulting from the heating, so, even if it is small, it can
raise M* to one. In the second case the friction acts while My is

small and so gives no substantial rise in M,; hence heating cannot

give the results obtained in the first case.

Flow in a Channel of Constant Cross-Section, Heat
Influx along Entire Length

A simplified relation of the degree of heating to M*i’ Nmf,
and { is needed for some general purposes, such as those dealt with
in section 5. This relation should correspond to some average type
of heat influx intermediate between the above two casges.

This relation is readily derived as follows.

From (1.29) with dF/dx = O we have

®f C% 2k - L Mﬁ X
- - f X)), (s
8, <®i>g:oexp< k+1€L£l+MidL> !

Here the preexpomnential factor is the degree of heating found
from (1.29) for { = O for the same M, and M .

An approximate value for the integral may [16] be found as
follows.

We have from (1.29) with { = O and dF/dx = O that

1-Maf 1+ dlne

ax 2 dx ?

3%

",



30

or

2k dx (My) _ 1+ M, d1n @

K+ 1 g %

in which x(Mg) is given by (1.51). Then

1n<®f> _ QKT Mezt- d—X(M—)e)dx .
T@._c=o k+10 I

We extract the mean value of dy/d(x/L) from the integral and replace
it vy X(M*_f) - X(M*i) to get

This is substituted into (1.57) to give

1 cL
®

"6 7C-0 (1.58)
i 1
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This reduces to known relationships in two limiting cases:
when Qf/®i = 1 (no heat transfer) it becomes (1.50), and when { = O

(no friction) it becomes (1.52).

@ I
/o,
7 - - 1
6 A=T2
5 _
4 — i
7
3 A
2 -
v
! MoF

02 a4 05 08 0
Fig. 3.

Comparison of degrees of heating
for My, = 0.2: 1) and I) from

(1.58); 2) and II) half the sum
of (1.53) and (1.56). (L as

follows: 1) and 2) 0.25; I)
and ITI) 5.

Figure 3 shows how C}/@_ as given by (1.58) differs from half
i

the sum of the values given by the above two cases; the values are
for M%i = 0.2.

The agreement is good, so (1.58) gives ®ﬁ/®_ intermediate
i

between the values for influx at inlet and outlet.
Flow in a Widening Channel for M = constant

(1.23) with M = constant gives us the relation between rate of
increase of area, temperature, and resistance:
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1+ kM? de kM?
—_

o &t (1.59)

1 aF
F dx

A channel of reasonable length should not diverge rapidly for
reasonably small M and not very large degrees of heating.

The local angle of divergence ¢ may be used to characterize
the widening (section 3); this is given by

P D ar
tan — = — —. (1.60)
2  UF ax

(1.59) with M sufficiently small gives

14F 1 40
—_——— —, (1.61)
F dx 20 dx
SO

L

¢ 1 Dm. ®f

tan 2= [ tan L ax = - 1n — . (1.62)
o L S 2 8L ®i

Here ?m is the mean value of ¢; Dy is a value of D intermediate
between those for the inlet and outlet.

This relation shows that for ®f/®i < b and I/D.m > 50 we have
¢ = 0.5°, which means that the resistance coefficient will be almost

m
exactly that for channels of constant cross-section [ol.
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5. Maximal Degree of Heating and Efficiency of Supply
of Heat to a Channel of Constant Cross-Section

We have seen (section 2) that M < 1 when heat flows into a
channel of constant cross-section®, so the degree of heating is also
restricted. The greatest degree of heating for { = 0 is found by
putting M%f = 1 in (1.52):

® ma;
<—®f—>g—: ) C“‘_—l a )2 (1.63)
1 i 2M%i

(1.58) gives us for friction present that

L

(™. [ ) T ) @ ey

i ®;

Figure L4 shows results for this as found from (1.63) and

(1.64).

High degrees of heating are obtainable for fairly large gi
only if M, is small. For instance, (®f/®i)max > 1.5 is obtainable
with gi = 5 only for M*i < 0.35. This requires us to consider pos-

sible ways of reducing M*i'

The referred flow rate g(M*) increases with M, for My < 1, so

¥(1.28) also implies that M < 1 in this case.
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for fixed F and C& we can reduce Myes only either by decreasing the

flow rate G or by increasing the pressure P,, as (1.37) shows.
i

C}
(s, )

14
12 \
10 \\\
08 \
06 \\
04 \
' YA\ Y
02 W ;

k3

N e

02 04 06 058 10

FPig. 4.

max
Relation of log(C%/@i)

for gi of: 1) 0;

3, o

"1

2) 15 3) 5.

to M

It is undesirable to reduce the flow rate if the gas is to be
used in an apparatus that cannot work efficiently with a flow less
than a certain value. In addition, reduction of the flow rate with
a given degree of heating reduces the amount of heat removed per
second by the gas; so reduction in M*i usuvally requires a rise in

P., and hence the maximum degree of heating is restricted by the

i)

permissible pressure.
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We shall now see that reduction in M, not only enables us
'l\l

to increase the maximum degree of heating but also raiseg the effi-
ciency of supply of heat to the gas. This efficiency is character-
ized by n, the ratio of the amount of heat Q carried off each second
by the gas to the power N required to pump the gas:

g
N

N =

The efficiency clearly increases with #. The heat carried
off each second by the gas is

Q = ch@i (.23 - 1> ) (1.65)
i

N is found as the work needed for isentropic compression of
the gas from the pressure p_at the outlet to the pressure Pi at the

inlet; it is given by

K -1
N = ch®i<1 -o E > (1.66)

in which

o]

o= —
P,

1

This o is termed the pressure coefficient. It is assumed in (1.66)
that the kinetic energy the gas has at the outlet has been completely
lost, which is not always the case; but this assumption is quite
Justified for the purposes of qualitative analysis.



36

(1.62) and (1.66) enable us to replace (1.65) by

®f
Ei- - 1
x = — i (1.67)
k-1
k
l -0

(1.37) and (1.39) can also be used to find o; the first is
written for the initial section and the second for the exit, the one
being divided by the other to give

(1.68)

(1.68) applies to any chamnnel, not merely one of constant
cross-section. In the present case (constant cross-section) we put
F. = F, in (1.68).

a
This can be used with various values of My. in the range M.,

1], in which Mif is M, for adiabatic flow (no heating), which is given

by

X (M*i) - X (Meaef) = gf"

Taking M, and gi as fixed, we find C%/®i from (1.58), o from (1.68),

and # from (1.65). Then each ®f/®i corresponds to a certain u for
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given M*i and (L, so # is a function of CE/®i with M*i and CL as
parameters.

There is a maximum in »#, whose height is dependent on gi and.
M3 this is the largest for a given My; when [ = O (no loss) and is

termed #n___ .
max
Figure 5 shows # as a function of M., which to some extent

indicates the effects of increased pressure on the efficiency of

Zmax

100
-

60

40 \

20

M,
02 04 06 08 1o°i

Fig. 5.

Relation of ”max to M%i'

heat transfer. Reduction of M*i from 0.3 to 0.15 (which corresponds
to increasing Pi by roughly a factor two at fixed flow rate) causes
® to increase by over a factor five.

Figures 6 and 7 give a reasonably complete indication of the
effects of C)f/®i and increased pressure on #; they show as ordinate

n referred to the n .. for given Mses -
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Figures 6 and 7 clearly illustrate the effects of gi on # for
given M%i°

T
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Fig. 6.
Relation of # to ® f/@_ and
1
L for M*i = 0.2 and gi of:

1) 03 2) 1; 3) 2.

Figure 8 shows # as a function of C}/@, for My, of 0.2 and
i

0.4 (CL = 1). Tt is clear that u increases appreciably when My, is

decreased for a given ®f/®i'

For example, reduction of My, from 0.4 to 0.2 for ®f/®i = 1.5

causes n to increase from 3.4 to 10 (by a factor 2.9). The effect
is more pronounced if My; is reduced (e.g., from 0.4 to 0.2) while

C}/@_ is increased (e.g., from 1.5 to 2.4); this causes u to increase
i
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from 3.44 to 21.5 (by a factor 6.25).
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Fig. 7.
Relation of u to ®f/®' and
i
g for My, = 0.4 and (L of:

1) 0; 2) 1; 3) 2.

For any given M*i and specified gi there is an optimal ®f/®i
(that giving the largest #). For example, for My = 0.2 and gi =
= 1 (Fig. 6) this optimal value is close to 4, while for My; = 0.4
and (L = 1 (Fig. 7) it is close to 1.5.

A knowledge of the optimal Of/®i enables one to select the

most efficient conditions of operation.
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@

Fig. 8.
Effects of Mli and C%/®i on

n for M*i of: 1) 0.2; 2) 0.h4.

6. Comparison of Efficiency of Supply of Heat
in Various Channels

A real channel is frequently a part of a closed loop (as in a
nuclear reactor); the gas passes from the exit via various pipes back
to the inlet. The power consumed in circulating the gas will then
be dependent on the resistance of these other pipes as well. The
power 1s given by

7 7 4
Pr e Py Pr
__..z..._—-u-:o'—_
PP

1 1P Pe

in which Pf'/Pf specifies resistance of the pipes. This means that
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channels under consideration for use in a given plant are best com-
pared by reference to the o needed to take up a fixed quantity Q
of heat. The best channel has the largest o.

We assume that ®i’ js) and G (gas flow rate) are constant.

f’
I Ir I . IT I .II . I L1
Then G~ = G, @ = @, 8] = @, so (1.65) gives (C%/®.) =(64/0)
1
I T
= 0/6,, so g T

@ = B..
The channels then produce the same degree of heating of the

1]

s

gas. But pg = pgl, so (1.39) gives

I I 1T
FYOL) = TLY(L). (1.69)

Then (1.68) and (1.69) give

ot Fi g(Mii)

IT 1T _.II
o Fy g(Mii)

(1.70)

This enables us to compare chamnels for efficiency in a fairly
simple way. Two cases are considered below to illustrate this.

Comparison of Efficiencies for Heat Influx at Inlet and
Outlet for a Channel of Constant Cross-Section

Consider a channel of fixed cross-section which in one case
receives heat at the outlet (channel I) and in the other at the
I II

) _ . I _ I _
inlet (channel II). Now Fp = Fgs 80 (1.69) gives Myp = M#f M%f.



We consider for simplicity the limiting case Ng = 1; Fig. 9 gives

o
results from (1.53)~(1.56) and (1.70).

Influx of heat at the outlet is more favorable than that at
the inlet.

%
13
L~
1.2 'ﬁf’
A L~
yd 3=
4 LA
L
11 /
Vi
/ //
®
! & 3 4 __f
®;
Fig. 9.

Comparison of efficiencies
for heat influx at inlet
and outlet for a channel
with F = constant for (L of:
1) 1; 2) 2.

Section 4 shows that influx at outlet or inlet camnot actually
occur in pure form; but the results obtained here are still of prac-
tical interest. The greater the heat influx at the start of the
channel, the closer the case to that of influx at the inlet; and
similarly for the outlet. The analysis indicates that the efficiency
of a channel may be raised by bringing it as close as possible to
case I (not case II); as much as possible of the heat Q should be
supplied as close as possible to the outlet. Figure 9 shows
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GI/GII, the maximum possible (theoretical) gain.

For instance, for a maximal C%/@_ of three and gi = 2 we have
i

olfott & 1.2; pf = pl, so PIT ~ 1.2P1. Then a threefold rise in

retardation temperature of the gas for gi can be produced in channel
I with an initial retardation pressure 20% lower than that for channel

II.

Comparison of Channels with M = constant and F = constant

Channel I has M = constant; chammel II, F = constant.
- MII
Let chammel IT have (L = 1, and M = 0.2, and of/®i =L,

which is close to the optimal value (Fig. T).

Channel I has the same inlet cross-section as II: Fi = FiI =
IT
= Ff .
(1.58) with the given Qf/®" CL, and M{? gives MiI = 0.5.
i =i T
(1.29) gives, after integration and use of My = constant, that
T k-1 L+ ) k
o1 - 2 * 2 Z
<f> k ¢ 1 f__(@f) o . k + 1 %%Dm
~ T =
F 8,
i R

in which



Di < Dm < Df.

From this and (1.69) we have

*l 'kf 36 =
so from (1.70)
I
O'I g(M-)(-i)
= ~ 1.15.
oI 0]

The channel with M = constant is better than that with F =
= constant; this is attained by increasing the cross-sectional area
by a factor 2.25, which corresponds to an increase in diameter by a
factor 1l.5.

The above analysis is not complete, of course; it must be
refined for each particular case by reference to experimental evidence
on the coefficients of heat transfer and friction as functions of
channel geometry, method of supplying heat, temperature, and perhaps
gas pressure.
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CHAPTER II

GAS FLOW IN A SYMMETRICALLY HEATED CHANNEL WITH PIANE-PARALLEL
WALLS: METHOD OF CALCUIATION

The one-dimensional theory of the previous chapter is based on
the assumption that the parameters (speed, temperature, density, pres-
sure) are independent of the transverse coordinate, being functions of
the lengthwise coordinate alone. It has been shown [39] that this is
almost so for flows in sufficiently long tubes at high values of
Reynolds number.

On the other hand, there are several problems that the one-dimen-
sional theory cannot solve, including that of the character of the flow
near the crisis point.

Further, the resistance coefficient { and the heat-transfer fac-
tor o of the one-dimensional theory can be given a theoretical basis
only from & more detailed study of the flow in channels. For this we
need to use the equations for a viscous compressible fluid, which are
very complicated even in the limiting case Re — ® (boundary-layer
equations ).

There is an extensive literature on boundary layers and hest
transfer [17-19, 21, 23, 32, 34, 36-38, L2, etc.]

Here I consider the simplest case, namely symmetrical flow in
a plane-parallel channel.

We shall see that the methods developed for plane-parallel
channels can be applied also to ecircular tubes.

Calculations on the boundary layer in & channel involve the
need to solve the interior problem, which differs from the exterior
one (in which the speed of the gas at the boundary is a known function
of the lengthwise coordinate) in that the speed at the axis is now one
of the unknowns.

Iaminar adiabatic flow of an incompressible fluid has known
solutions for channels with plane-parallel walls [58] and for circular
pipes [38, 57]; there are also solutions for the adiabatic flow of a
gas in the laminar [11] and turbulent [1, 41] modes.

There are papers on laminar flows of incompressible fluid in pipes
in the presence of heat transfer [46, 47, 53, etc.], and also many on
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turbulent flow in pipes [18, 23, L4, L8, 50, etc.]. These have as
object, in particular, the derlvatlon of the effects of Pr on the re-
lation between the heat-transfer and re51stance coefficients (i.e., on
revision of the Reynolds analogy for Pr # 1).

There have recently appeared several fresh studies of turbulent
gas flow in pipes in the presence of heat transfer, in particular
[20, k1],

Some simplifying assumptions were made in [41]; in particular,
it was assumed that the density and viscosity are independent of the
temperature and of the transverse coordinate.

The theory of local similitude [12, 13] was used in [20] to
analyze experimental data; relationships were given for the heat
transfer in the initial part of the tube.

Here I give a new approximate method mainly directed to two
purposes: definition of the limits of application of the Reynolds
analogy and a more detailed study of the effects near crisis.

In principle, the method is applicable for all Pr, but I assume
that Pr = 1, which greatly simplifies the equations for the boundary
layer and which much reduces the volume of analysis and of calculation.

This limitation of the purpose leads me to put Pr = 1 and to
study the conditions for deviation from Reynolds analogy associated
with factors other than the deviation of Pr from one, especially since
the effects of Pr on that analogy are already largely known. 1 assume
that € (turbulent-transfer factor for momentum) and ¢’ (the same for
heat ) are the same: € = ¢,

In addition, I assume that Re < 105 although anaslogous results
can be derived¥ for Re > 10°. The assumptlon Re < 107 ensbles me to

simplify the treatment, because the velocity profile in this range is
adequately described by a power law (the T 1aw), so the problem re-
duces to that of examining the effects of M and heat transfer.

1. Basic Equations

Consider the steady-state turbulent flow of a gas in a channel

*Bee Section 13 of this chapter.
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of width 2h. The Ox axis lies along one wall and is directed downstream;
the Oy axis is perpendicular to the axis of the channel and is directed
into the gas (Fig. 10).

— X

Fig. 10.

Plane~parallel channel.

The speed at the axis in the initial section is assumed subsonic.
The wall temperature or specific heat flux can be any function of x in
the general case, Here I assume that the two functions are identical
for the two walls (symmetrical case).

The set of equations for the boundary layer in terms of time-
averages takes the form

<——> 2200 3l e
p(u v 5—[(11+ e)y] (2.2)

3(pu)  3(pv)
+ = 0, (2.3 )

Ox dy
p = PRT, (2‘)"')
- ul

@:T-l-k 1. u . (2.5)
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System (2.1)-(2.5) is the same for the exterior problem as for
the interior ome.

dp/ﬁx is known for the former, but the pressure is one of the un-
knowns for the latter, though we do have here an additional conditions
(constancy of the flow rate along the channel).

We put (2.1)-(2.5) in dimensionless form for convenience in fur-
ther exposition.

We take half the width of the channel as scale for the transverse
coordinate y: y = ya. The symmetry allows us to discuss only half the
width in what follows.

Values at the wall (y = 1) by subscript 1.

The scale for the velocity components u and v is the limiting
velocity at the center of the initial section of the channel:

We also put
pP=pP, T=T0, p=0p ,
RO, .
1i
@:@ H=Eu/ €=-€_u,

in which ui. is the viscosity at the axis in the initial section for the
1

stagnation temperature ®1"

i
l ~
The Re defined from u(l? and uii is denoted by Re:
1
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~ ugj_')hPi
Re = ———— (2.6)
H13R0,
and we put
x = x h Re. (2.7)

Simple manipulations based on (1.45) enable us to put (2.1)-
(2.5) in the following form (the bars over the dimensionless quantities
are here and henceforth omitted )*:

By du k - 14d d|(u + e)au]
o — + Re v ;) =-£ - 2% 4+ = [\” —— | .
<u ox 3y ok dx 3y oy (2.8)

=) 9
p u?(j.i-ﬁev-?i):asr—[(u.{.e)—gg], (2.9)

o(pu) _ 3(ev)

+ Re = 0, (2.10)
dx dy
p = oT, (2.11)
2
@=T4+ u. (2.12)

*Special mention is made in what follows of any operation involving
dimensional quantities.
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2. Boundary Conditions

The system (2.8)-(2.12) must be complemented with boundary con-
ditions.

The condition for the velocity is that of adherence to the wall:
u =v =0, (2.13)

The condition for stagnation temperature ® varies in accordance
with whether the wall temperature or the heat flux to the gas is the

known quantity.

In the first case, clearly, Pr = 1:

® =T =T (x 2.14
0 0 O( ): ( )
in which T (x) is wall temperature¥*,

In the second case we take account of the variation in thermal
conductivity with temperature and put that

3N gp(x)
CB-V)o_ xo |

0

Here qo(x) is a known function of x (the heat flux at the wall) and

*¥The wall temperature is denoted hereinafter by © for convenience.
0
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A dis a function of T .
0 ()

Now (2.12) gives

Yy~ 0

<§j—>o= CZ—D; o Cj) ’

so (2.13) gives
@) - ®,,

and the condition at the wall may be put as

(x)
(_/.2_39 = - 9—’;\—— . (2.15)
3/, ,

3, Integral Relations

An approximate method will be used to solve (2.8)-(2.12), so
integral relations derived from these equations are deduced.
We integrate (2.10) with respect to y between wall and axis (i.e.,
fromy = 0toy =1) to get
1

el ~ 1
ax .[ pudy 4+ Re [pv] = O.
0 0]

(2.13) gives vb = 0, and vl = 0 by virtue of the symmetry, so
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1
[pv]0 = 0 and hence

J pudy = O. (2.16)

The integral is the mass of gas flowing each second through any
cross-section. (2.16) implies that this mass (the mass flow rate) is
the same for all points. Let G denote the flow rate (as in chapter I);
then instead of (2.16) we have¥

J pudy = @ = const. (2.17)

We integrate (2.8) with respect to y = O to y = 1 to get, taking
all terms to the left, that

1 1 1
qu_a.u_dy+5ejpvﬁdy+k_l§2—[(u+€)_a_u_] = 0.
0 ox 0 oy 2k dx dy ~0

(2.18)

The second integral is taken by parts and (2.10) is used to give

1 1 1
ReIPV-—dy=Re[pvu] - e‘[u (p)dy=ju (p)dy,

*Gl here an henceforth denotes the flow rate for half the width of the

channel,
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50 the sum of the first two terms in (2.18) is

1 1 1 5

J ou U gy + Re J ov & gy = & I pu dy.
ox oy dx

0 0 0

(au/ay)l = 0, on account of the symmetry, while € = O (turbulent
0

transfer coefficient at the wall), so (2.18) is replaced by

2 - Su
oudy + EoL1dR b C'g:)'f—> = 0. (2.19)

a
dx ok dx

O &Y

Entirely analogously we have from (2.9) and (2.10)

d 30
- = 0. 2.20
puBdy + My <§§> o ( )

o

X

ce—

Note that (2.19) and (2.20) are extensions of (1.7) and (1.8) to
the case of nonuniform velocity and temperature distributions over the

channel cross-section.

Also

1
1
= J puldy = @ (2.21)
%0 "
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5L

is the mean-mass stagnation temperature, while

1
1 2
= I pudy = u (2.22)
10 .

is the mean-mass speed.

(2.20) and (2.21) together can be put as

G = ="K <§§£> ’

ax

or, from (2.15)

4ae - Ho
¢, —= —q,- (2.23)
dx 7\0

Pr = 1 gives (with all quantities except Pr dimensional)

A
0

Also, 8§ = 2, so reduction of (1.7) to dimensionless form readily emnables

us to show that it is the same as (2.23).

Now we put (2.19) in the following form by means of (2.22):
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d k - 1dp
c 3 " — <_._au = 0. (2.2k4)
1 gx ok 4x 3y ‘o

Putting (1.8) in dimensionless form, we have¥

dw k-1dp C . =
Gla—x—'l' _g-k—.a?+_8_GlWRe = 0. (2°25)

(2.24) and (2.25) are the same if we assume that w = u and

put

¢ = oo (a‘l> ) (2.26)

Re(}lu.m

This expression for { will be used in future.

L, Relations at the Axis of the Channel

The method given below is based on (2.16), (2.19), and (2.20),
together with (2.8) and (2.9) as written for the axis.

The latter equations are obtained by putting u = uy and v = Vl

in (2.8) and (2.9); v = 0, on account of the symmetry, so

|
¥Here the hydraulic diameter is D = 4h, which must not be forgotten.
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du
1 k - 1dp ? ou
U ——— — ] — L+ €)
pl 1 ax 2k dx 3 [ ( ) oy ] } ?

lldx { [(”+e)_]}

Prandtl's theory [24] gives € as

in which 1t is the length of the displacement path.

But (au/ay)l =0, so ¢, =0, and¥

{= ~[Gro2]) (2420 (),

32u 52u
+(ul+el)<82>l ul<—a—2- X
Y Y

But (a@/ay)l = 0, on account of the symmetry, so we have

*¥A11 deductions still apply if Gl # 0.
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(2l wro2]) -n a‘;’)

dy 1
and the equations for the axis can be put as
duy k - 1dp ?%u
p u + - = ul< ) , (2.27)
1143x 2k dx ay2 1

p.u =pu (2.28)
11
dx 1 ( 3y2

The derivation of the right-hand sides of these equations will
be dealt with in the presentation of the computation method.

5. Relations near the Wall

Simple power functions will be used for the velocity and tem-
perature profiles, in order to provide an approximate solution:

u = wy?, (2.29)
® -0 = (8 -8 7, (2.30)

in which n and m are form parameters (functions of x), with 0 s n =1
and O =m < 1,

The profile of (2.29) cannot be extended right up to the wall,

since Bu/ay = ulnyn"l = ® for y — O.
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Following Prandtl, we assume that € = O near the wall in the
here inertial and pressure forces are small rela-

viscous sublayer;
Then (2.1) gives us approximately that

tive to the viscous ones.
d du
SCEPRL
3y oy

so, with p = constant, we have a linear velocity distribution near the

wall:

in which & is the thickness of the viscous sublayer.

We cannot put p = constant for the sublayer if heat transfer is
important, for p is a function of temperature, and this may vary sub-

stantially near the wall. In this case

i.e., the frictional stress is constant within the sublayer.

The last equation gives

U = =——— -—-—-_Oy’ (a)

0 [S)

By y

in the symbols
y
1 1edy

7_=?J.Tf' (b)

Hy 0
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We put ¥ = & in (a) to get
o (2
'U.6=:— _O ’
By Oy

whence the frictional stress at the wall is found as

e (—;‘;—)O =1;—6ﬁ6. (2.31)

Here ﬁé is a mean value for the viscosity of the sublayer.

From (a) and (b) we have

z

11"611
65

=1

¥

The velocity profile in the sublayer is not linear in this case.

The thickness of the sublayer is found from the following argu-
ment, The Prandtl-Karman theory gives for M small and no heat transfer
that 8 is defined by¥%

ugd
—— = Rey = comst (2.32)
v

(u6, 8, and v are dimensional here). We have in dimensionless form

¥This constant 1s denoted by oA in turbulence theory, but o is used
for the heat-transfer factor here.
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that
~ uaé
Re = = Re,. (c)
v 6

We assume that for M large and for heat transfer present the
Re is the same if as our v in (c) we put ¥ = ﬁa/ﬁ, in which pg is

the mean viscosity of the sublayer (see above), while p is the density
at a temperature T, corresponding to Ea'

Then & is given by

(a)

But p = p/T, so, putting the relation of viscosity to temperature as

w=1P (2.33)
and using (2.29), we have
n+l
~ Wb P
Re = Reg,
1
=1l + =
Mg B
and so
1 1
—~14=
Re&“& B n+1
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Section 8 of this chapter deals with the determination of Reg.

We need to know the distribution of p in the sublayer in order
to find & and the velocity profile there. We assume that l/u is a
linear function of y within the sublayer:

Ioi,(X.1yx,
SR Mg Ry
SO
)
1 1pdy 1 1,1 1
-:—:—-I—:—'-F‘—(—-—_ . (2'35)

An anglogous sublayer occurs for the stagnation temperature;
with Pr = 1 we may [15,&0] assume that the thickness of this is also
8, so at the wall we have, by analogy with (2.31), that

2
e -0
elc) 8 0 _
Ho (— y ™ By (2.36)
oy 5

Successive approximation may be used to find 8 from (2.32) and

aa from (2.35).

We first put ﬁ& = iy in (2.35) to get from (2.33) that Hg = @g;

- 1
from this R, we find from (2.34) the first approximation 6< ), 50 we

have

= - u2 .
(1) = O (1) " )
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From (2.29) and (2.30) we have

m 2n
Té(l) = ®O + (®l - @O)a(l) - uiﬁ(l)

From (2.33)

-
ua(l) = Tﬁ(l) .

2)

From this p (1) we can find a second approximation & . The
)

process is continued until the differences between successive approxi-
mations become sufficiently small.

Note. The calculation of & and ﬁé can be improved if we use

for L/u the approximating function

1 1 1 1 AN
===+ (=-=)(3)"
B Mo

BooHy

i

in which w is a constant that can be found from the following argument.
We find & by the above method and require that for y/& = 1/2 we have

™ - Ko

This gives us an equation in the unknown ®, which is found and
is used to revise & and EG, which are used to revise w, and so on.
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6. Expressions for the Coefficients of Resistance and Heat
Transfer in Terms of the Boundary-Iayer Parameters

We now need expressions for { and «; the first (the resistance
coefficient ) has been found above as (2.26). From (2.29) and (2.31)
we have

. (2.37)

Now @ is, by definition, the ratio of the heat flux at the
wall to the difference between the wall temperature and the mean
stagnation temperature [all quantities in the equations up to (2.38)
are dimensional, apart from the numbers]:

We now introduce the dimensionless heat-transfer factor in the
form of Stanton's number:

F q
ST=.1';_G__O_
- @
1 Cp(®0 m)

But Pr = 1, so cP = Ko/uo, and the last equation is replaced by the

following by virtue of (2.15):

or, after converting the right-hand side to dimensionless form:
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ST = — S P_L‘)@ <a® >o' (2.38)

ReG; 20 " 'm oy
That is, we must know (au/ay)o, (B@/ay)o, u , and ®, in order

to determine { and St.

Expressions for the two partial derivatives in terms of m, n,

Uy ®, 85, and 8 have been derived in the previous section.
The expressions are simplified by the use of the following
symbols:
1
u
I, - | - ay, (2.39)
0 ®~-u
1 2
u
I = I dy, (2.10)
2 2
® -u
0
1 u®
T = J ay. (2.41)
3 ® 2
0 u

as

1
u
G =J'pudy=p j dy = pI., (2.42)
0
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1 1 o2
6w, = [ puay = p ay = p1_, (2.43)
im o) 2
® -u
0 0
G 0 T puBdy = p J u® d I (2.44)
= L = Yy =P - .
1e I ® - u2 3
0 0
(2.42) and (2.43) give
I2
ay - £ (2.45)
I
1
(2.42) end (2.44) give
I60 -1
®@ -0 = =0
0 m I :
1

- _6__1.1115’“‘1 . (2.46)

Similarly, (2.38), (2.36), and the expression for 9, - Ch give

———

H I m-1
sp = 2 1 (8 - 8)8 (2.47)

ReGy 11% - I3
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1

8, m, and n in order to determine { and St; that is, we must find

That is, we must be able to compute Il, 12, and T as well as know u_,
>

®

2

the pressure, mean velocity, mean stagnation temperature, and Gl from
(2.42)-(2.44), in accordance with given initial conditions,

The following sections deal with these.

T. Calculation of Flow Rate, Pressure, and Mean Gas Parameters

First we find Il, 12, and I5 as given by (2.39)-(2.41). To

simplify the treatment we assume that (2.29) and (2.30) apply right
out to the wall; this cannot introduce any substantial error, on
account of the small thickness of the viscous sublayer¥,

Now u° < @ = u° + T, so L/(@ - u2) can be put in the form of a
convergent series:

1 - - -
gt (1 + ot s uh® s cee)e
2
® -~ u
We put
l - - Iy >
J‘ ul®de = I(l’J ),
0
to get
I, = 1(1,-1) 4 1(3,-2) 1(5"5) + oeea, (2.48)

¥*See Appendix IT.
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_1(2-1) , ((h-2) , (6,-3) e (2.49)

= I(l’o) + 1(5’-1) + I(S’-e) o . (2.50)

Tt remains to find the integrals 133). Ve nave from (2.29) and
(2.30) that

® .
.. - . .. 1 3
TRC =u:iynl[®0+(®l_®0) ym]J =uiynl®g[l+<—é;—-1>ym] .

We consider only the case of heat inflow; 0 < ®l/®0 < 1, so |1 -

- ®I/®O| < 1, and we have the convergent series

ERCHDES PN IETS

in which

(J)_J(J—U(j-m.u(j—k+n
L) ==

=T 2

k!

so%

¥See Appendix I regarding the operations on the series.
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. (A ¥
I(i’j)=ui@-)j‘ 1 +i<i¥:)<®o'l)

10 . .
ni+ 1 k=l ni + mk + 1

(2.51)

I, T, and I_ are then known.
1 2 3

- ® - . »
We must be given u,., @ ., n,, and m, (for the initial channel

cross-section); from these we have from (2.42) the gas flow rate:

G =215, (2.52)

in which

p.——'II(u- k+l .
i 1i v

k-1

From the flow rate we have the pressure in any channel cross-section
from (2.42) as

G
1
p = —. (2.53)

1

(2.43) and (2.44) are then used to find the mean speed and mean
stagnation temperature of the gas. This method of finding the mean
parameters enables us (in accordance with the statement at the end of
section 3) to ensure that the quantity of motion, enthalpy, and flow
rate are the same in the actual and assumed one~dimensional flows.

In addition, the pressure, and hence the momentum, are the same. It
has been shown [35] that this method of finding the mean is one of the

two best.

The mean density and temperature must be found directly from
(1.2) and (1.14):
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(2.54)

T =0 -, (2.55)

8. Calculation of the Thickness of the Viscous Sublayer

This thickness 8 is expressed in section 5 in terms of Re6 in

(2.3&). We determine Re6 on the following basis. We require that

u, < [(x - 1)/ (x + 1)]l/2; that is, that (2.37) should coincide with

Blasius's formula

L
n

C = 0.3164 Re (2.56)

for speeds well below sonic in the absence of heat transfer (m =0,

®O = ®l = 1), this being applicable for Re < 105. In (2.37) we must

put n = 1/7, which corresponds to a Blasius velocity profile.
Re must be determined for the mean rarameters by reference to

the hydraulic diameter, which is twice the width of the channel; the
linear dimension is half the width in the calculation of Re, so

. (2.57)

(2.33), (2.54), and (2.55) give
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(2.34), taken with the above and with (2.53), gives

hRe 1T ~—
5 Bt 1 2.8 ]Ml
8 = o )
Re U‘l

These values of Re and 8 are inserted in (2.57) to give after
manipulation that

on n-1 (2B+1)n-1 on

B —— I &o+1 -
u 5 1 oL B(n+1) ol
£ =32 1-1}-(@111 - u ) n+l ( uRe6—> g Re . (2.58)

m ul

With u, < [(k - 1)/(x + 1)]1'/2, we have for n = 1/7 from (2.48),

(2.49), and (2.51) that

2
u u
. 1 T I 1 T 2
— = = 1 = - U, .
1,41 8 Y72 one1 ol
From (2.45)
12 n+ 1 8
u o —— . I —— .
T, en+1 9ul
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We can put ﬁé = 1 for low speeds in adiabatic flows. In addi-
tion,

2 2
®m “u, =1- o ~ 1.

Then for low speeds and adiabatic flows we can put (2.58) for Re < 107
in the form

1

2 -x
PN
£ = 36 (—'-(—Re6 ) Re .
2
Comparison with the Blasius formula (2.56) shows that

36 (—-Z—Re&) i 0.316k,

whence

W

2 36
Re, = — = 157, (2.59
S < 0.316M ) )

This gives us Reg and 8, so { can be found from (2.37), St from (2.48)

>

and also the other flow parameters, if m, n, u., and ®l are known.

1

*Nikuradze's experiments [52] give Reg = 132, but I have retained

Re6 = 157 here in order to be able to use Blasius's formula.
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Before we consider how to compute these we must consider the

conditions under which Reynolds analogy is applicable. This enables
us to choose m and n correctly for the initial section and also to ob-
tain additional date needed in the development of the method.

9. Reynolds Analogy

We determine the ratio of { to St; dividing (2.46) by (2.47),
we have

u Oy, = Iz oo
£ s 5 1@ A S (2.60)
St 0~ %1 12

(2.29), (2.30), and (2.39)-(2.41) give

1 1 -
. ®J‘ u j 8, + (& ®O)ymd
T -T = dy- u Ve
01 3 0 ‘e - o2 5 @ - 42
or
1 ym + n
O, - Iy = (8 ~ ®) uy j 5 dy. (2.61)
8 - u
0
In addition
1 o 1 o
u 2 y
I, = J’-————E ay = u I  ay. (2.62)
O@-u 06 -u

We assume that the velocity and temperature profiles are similar
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>

(i.e., that m = n). Substituting (2.61) and (2.62) into (2.60) and
putting m = n, we have

= - 8. ) (2.63)

. Thls direct proportionality is called the basic relationship
of Reyndlds analogy or the basic relation of the hydrodynamic theory
of heat transfer [7]. It was first derived in 187L by Reynolds on
the assumption that heat and momentum are transferred in identical
fashion [55].

The conditions for the two profiles to be similar are readily
found from (2.8) and (2.9) (boundary-layer equations), which imply
directly that for Pr = 1 (the case considered here) we must have
dp/ax = 0 and @O = constant if the two are to be similar.

This means that the analogy applies, strictly speaking, only
when the gas flows around an isothermal plate; but experiment shows
that it applies quite closely for gases and liquids flowing in pipes
[36,37,42].

The effects of temperature variation in the plate on the re-
lation between { and St may be estimated [30] from the results of
[10]. It is shown that for dp/dx = 0, Pr =1, and p = T equations
(2.8)-(2.12) for the case of a laminar boundary layer (€=0) become
ordinary differential equations incorporating the change in tempera-
ture of the wall:

¢’ + 29" = 0, (2.64)
g’ + 29g’ + Lwp'g = O, (2.65)

with boundary conditions
9(0) = 9'(0) = 0; 9'(*) = 1; g(0) = 1, g(=) = O. (2.66)

Here @ and g are functions of the dimensionless variable §; u and ©
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are proportional respectively to U¢' and T(@O - Qw)g, in which U =

= v = (the proportionality factor is the same for both).
y..

The ® appearing in (2.65) is the (constant ) power appearing in

= A-Xw) (2-67)

for the relation of ®O (plate temperature) to X = x/L (x and L are

dimensional, L being the characteristic length).

(2.64) subject to (2.66) is Blasius's equation [43]; the solu-
tion is tabulated, which facilitates computation.

We use for [ and St expressions suitable for the exterior
problem:

5 (50,

{ = — (}-- , St
EREC U0, -6,

I

and it is then simple to find

I/o
___=8¢>()

] (2.68)
5 g’ (0)

We integrate (2. 65) as an ordinary linear differential equation
in g (§) to get



>

g g

€
I'4 _ _ ' . ' \
g'(8) = e (- [2we)[ &'(0) - ko [ ¢'g exp ([ 2048 ) ag] (2.69)
o 0 0
Now (2.64) gives 29 = - ¢"/9", so
g g " ”(g)
[owe=- [T ag--am S,
0 0¥ v (0)
and from (2.69) we have
Cp//(g) /

g'(8) =

5 ©g
‘(0) - bwg’(0) [ — a& | .
CP”(O) [ g g Cp” ]

We integrate this and use the fact that g(0) = 1 by virtue of the
boundary condition of (2.66) to get

o (E) , 5,
g(8) = —— g'(0) o [ @"(B)F(E)E + 1, (2.70)
? (0) 0
in which the symbol is
g
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We put € = » in (2.70) and use the fact that g(=) = 0 and ¢ (=) = 1
to get

g(e) == @ . hchp”(g) F(E)dE + 1 =0,

© (0) 0
whence
g’(O) = b J @ (E) F (E) d§ - 1. (2.71)
¢ (0) 5

In place of (2.70) we now have

g ®
g(8) =1 - ¢'(8) - bo [ [o"(8) F(2) a8 - 6(8) [ ¢'(8) 7 (8) at |.
0 0]

(2.72)
Successive approximation may be used to find g(&) if w is
reasonsbly small. As a first approximation we take g =g (§) =1 -
I
- ¢’(€), which is inserted on the right in (2.72) to give gII(g) as

second approximation, and so on. From g(&) we find g’ (0)/4"(0) from
(2.71). Taking only the second approximation for g(§), we have

g’ (0)

v (0)

~1l - 1.060 + o.ouu&ue,




T

and so from (2.68)

: 8 (2.73)

— e .

St 1 - 1.06w + 0.0L88w?

Then the analogy applies for lwl sufficiently small; §/St for

any given O is constant over the plate: ST = C = constant. But
even quite small changes in ® cause C to vary substantially (Fig. ll).

o
02 A1 ,//
|| yd
04
o A
-0 /Z —
0.2 -
AL ]
/L I
6 7 8 9 mw u 3

Fig. 11.

il

Relation of the constant Q/St
=C to w,

This means that there can be substantial deviations from the
analogy if the temperature distribution in the plate does not follow
a power law, so careful allowance must be made for temperature variation

in the walls in developing the method.
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10, Approximate Method of Computation for a Given
Temperature Distribution at the Wall

The initial equations to be used are (2.16), (2.19), (2.20),
(2.27), and (2.28). Use of (2.11), (2.12), and (2.42)-(2.44) gives
us a system of five equations:

d
— (pI

)=0
dx 1 ’
d k~-14a du
— (pI,) + --——E=—uo<—-—>,
dx ok dx oy 0
a fo(C)
— (pI)) = - 1y (——) (2.74)
dx 5 dy “0
pu du; kx -14 Py
0 - g Ox o ax TS Y
1 1

Py, d®1 32®
— — = L P
:  (
®l - ul dx aye 1

in the five unknowns p, u,, ®l’ m, and n, whose values must be given at
the channel inlet (i.e., at x = O).
We eliminate p from the system; the first equation in (2.T7k4)

gives

le = Gl = const,
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or

|

p=—=. (2.53)

=
|

We differentiate the products in the first three equations of
(2.74) and substitute from (2.53) for p to get

2
ar. I
L1, 1de_, ,
dx @ ax
Cip+50)
—_t = —---= ”0<3—> (2.75)
ax dx y ’
G, 1 0
ary;  I,I5 g 1 3
—_— ¢ —m - = - — - .
ax ¢, dx G 3y “0

The fifth equation in (2.T4) becomes as follows when (2.53) is
used:

2
®@ -nu 32

11 1 ®
- <—- . (2.76)

H

de

The fourth eguation of (2.74), together with (2.53), gives
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dp oK U1 1 1 u

"2"————5—*"—“1(—; 1 (2.77)
- - a -

dx klIl®l U.l x k-1 dy

This value of dp/dx is inserted in (2.75); the result is com-
bined with (2.76) to give us a system of four equations in the un-

knowns u,, 1, ®l’ and m:

dx k-1 ® - uj dx Gy dy
ok
200
I; N7 72 <82u .
- l“"l ‘a-—2.>l, (2'7)
Gl y
d a
Iy 2 1 %M i %0 ok 173 3u
et P TR TR F IR G DY
- ) 3 2 /1
B k1l T -2 ax G, y 70 k-1 G 3y
e I 8 -
17101 u1u<82®)
ot e e l Or— .
ax G uy ay2 1

For convenience in further operations we change the variables by putting
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Z5y ®l = %5 and m = z); I,, I,, and Iy are functions of

23, and Zh’ and also of ®O, which in general is a given func-

tion of x, soO

dz dz dz dz
— + N, — + N; SRR . N (2.79)
11 ax L2 ax 13 dx ik gy L '

(1= 1, 2,3 L")-

(2.79) is quasilinear in the derivatives of the z with re-
spect to x. An analogous sysbtem of equations has been derived [2]
for flow in nozzles in the presence of a flow core,

The coefficients N, of (2.79) are

k

oI I
N — _-i' - -_2.—k 1 /4
- >
ll aZl k-l 7z - l
3
2k
. o1 ) Tl +1 .
21 3 1’
Z
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3 2k 3
Ny = — - — z ,
%, k-1, _,2 1t
1 3 1
o1,
i
N =—,(i=1,2,3J=2,3 L),
i dy

dI_ 4@
N o= - = —) - =22 _—) - —= —
3 ¢ 9Nd¥y 0 k-1 ¢, 1 By2 1 98 dx
1% " 2 >0
G 271

(2.80)
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The N, are determined in terms of the I, and the BI_/azk, in
i i
accordaence with (2.80); Il, 12, and I_ have been found [formulas

(2.48)-(2.50) of section T1.

We need to know the Il’J and their derivatives in order to find
i 4
the Ii and their derivatives. Formula (2.51) gives the I ’J, and we

now rewrite this expression in the new symbols as

PG

z 1+ 1 iz + kz + 1
2 2 4

(1,3) _ i

This is differentiated with respect to zi to give

(1,3)
ML),
le Zl

I O
10
5 (z i+ l)

il

e

dz K =1 (1z

+ kz) + 1)

]

BI(i,j) -1 z ( ) ]

dz, 1z + kz) + 1
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(—23 )k
(1,3) < : &, '
AR igd Z k(7 ° —_—
aZh Zl 0 k=1 (k ) (i22 + kz’-l- + 1)2

<25 )k-l
) == -1
(1,3) . . ®
______.al S I(i’j)-zi(@j_gz z k<J> ° .
) ® 10 3 k=1 K ie + ks, +1
0 0 3 L
(

The oI 1’3%/6®O enable us to use (2.48)-(2.50) to find the
BIk/B®O that appear in (2.81). The (au/By)o and (3@/3y)0 appearing

2 2
there are given by (2.31) and (2.36), so there remain only (3 u/dy )l

2 2 3 - . - -
and (3 /3y )l’ which require special discussion¥.

We put

32u )
by <—5—2_>1 = - fu, <—§ = (2.82)
v

¥These cannot be found from (2.29) and (2.30); although power profiles
approach the actual ones closely, they cannot be continued right up
to the axis (or up to the wall), because they have cusps at the axis,
whereas the real ones do not.
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(2.27) becomes

du; k-1 dp

% 0
P U —— 4 ——= = (}-——:) = 0,
11 ax ok dx 0 dy 0

Comparison with (2.19) shows that f for [a(pv)/ay]l = O char-
acterizes the change along the length in the difference between the

mean quantity of motion and that et the axis. Continuity implies
that -d(plul)/dx = [a(pv)/ay]l, 80

and from (2.82) and (2.19) we have

da _ _ o r oev)
le_dX(Km Kp) - ug 5 ]1

u
%Cg%

in which
1

= 2 = 2
Kn = J pu-dy, Kl = plul.
0

If we assume that d(pv)/dy = O and dKﬁ/dx = dKi/ax for the main

part of the flow, then f = 1, which is sometimes taken as the basic
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assumption in calculations on adiabatic flows in pipes [L41].

An important feature of f is as follows (this will be used
later). The velocity profile is convex along the flow direction

2 2
(3 W3y < 0), and Mo (au/ay)o > 0, so we have essentially f 2 0,

so T cannot be negative, Similarly we put

)
)l = - Fu, <"a7y">o . (2.83)

e

By2

As above, we see that F for [B(pv)/ay]l = 0 characterizes the

change along the length in the difference of the mean heat flux (per
second ) and that at the axis:

d ( a(pV)
- Q) - c,8
dx “n 1 Pl [ dx ]l R
F=1-
20
-xo<..__
dy 70
in which
1
% = %p J puldy, Ql =c plul®l'
0

Heating alone is considered, so (a@/ay)o < Q; for the same

reason, the profile of stagnation temperatures must be concave in the



flow direction, so 3°8/3y° = 0, and hence F = 0 from (2.83).

Substitution of (2.82) and (2.83) into (2.81) gives

in which

871

(2.84)
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Nl Il
=T ”o< )
1
3
, Il de
1 B@O dx
) Il 3u 812 d®o
- 2y (2 2 22
x
Gl oy a®0
9T a®
i ___} " ( ___5__2
G 3@0 dx
and so, from (2.%6) and (2.53),
1+ .
15856 B Il 1
5 _ >22+l (2.85)
ﬁeGlzl ‘

All coefficients in (2.79) are now known as functions of z, 2,

ZB, Z)s %, f, and F.

The system is integrated as follows.

We assume that we are given the speed uy =gz = zli in the
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initial cross-section (x = O, whereial = 23 1) and that we know

il

that the velocity has a Blasius profile: n 22 = 1/7. We also

suppose that Reynolds analogy (m = Z) =%y = 1/7) for this section.

We now consider whether the analogy and the Blasius profile can
apply to the whole flow up to the crisis point (see chapter III for
the conditions for onset of crisis).

Here we must put 22 = z,+ = l/T and dzg/dx = dzh/dx = 0 in

(2.79), which gives the system the form

dg dz
1 3
N _ —— +0N,, — =N, (2.86)
il dx i3 dx 1

dz

l
3

dx

Let us emphasize that the coefficients are functions of Zl’ 23, and

x only, for z, = Z) = 1/7.

Consider the conditions for compatibility for these four
equations in two unknowns.

The first three equations in (2.86) do not contain F; they are
compatible if

N_N_N
11 13 1

N
21 N25 N2

Nxp Naz Ny
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whence substitution for the N, according to (2.84), gives

4 '

Nyp Moz Ny Npy Ny Oy
V4 r
r=|x v _ w|:|n_n
01 23 o 01 23 o
¥/ [ 4
N NN N N N
31 33 3 31 33 3

We find f and substitute for it in any two of the first three
equations in (2.86) to get a system defining z, and 233 the fourth

7
equation gives F as F = (dzB/dx)/Nh. The behavior of f and F must be
considered in the integration.
If f and F are positive up to the crisis point, the Reynolds
analogy and the Blasius profile apply up to that point; calculations

(chapter IV) show that f becomes zero for a certain x = Xp and then

becomes negative (the last if we suppose that m = n = constant ). This

means that we cannot have m = n = constant for x = Xf.

There gre difficulties in calculating the flow for x = Xas

chapters IITI and IV show how this can be done.

11. Method of Calculation for a Given Heat Flux

Here the distribution of the specific heat flux at the wall is
given as qo = qo(x), so the wall temperature is one of the unknowns,

which we give the symbol ®O = ZS. Here we have five unknowns instead
of four, and the system of (2.79) (in which we must put 8 = z5) must

be supplemented with a further equation. This is readily found on the
basis of (2.15):
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00
- Ay (2 —
o<5>(ay A

I}

dge (2.87)

]

(a@/ay)o is dependent on the z, (i =1, 2, 3, 4, 5), so

Z

z Z ), (2.88)

qO(X) = Q(Zl, 4 3: W’ 5

2}

in which ® is some function of the Zi'

XO is dependent solely on the wall temperature, i.e. on z_.

p

(2.88) is the fifth equation to be added to the system of (2.79);
it is more convenient to have it in differential form, because the
first three equations in (2.79) contain dz5/dx.

Differentiation of (2.88) gives

2 d
?E_ EEE.: qo (2.89)
3, dx  dx ) )

k=1

The new system of five equations is put in the form

k
E: Bk =N (i=1,2,3 4 5) (2.90)

The Nik (i, k =1, 2, 3 and 4) are defined by (2.80); the N,

are clearly Ni

>
5 = aIi/az5 (i =1, 2, 3), with N5 = O.

The right-hand sides N. , N and N, differ from those in the
9° 2q 3q
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equations of (2.79) in not containing terms in dCb/dx; also th =N.

It remains to find the coefficients in the fifth equation in
(2.90), namely (2.89), from which we have directly

0% .
Wy == (1=1, 23 4, 5),
i
dg
N o= =2,
> ax

System (2.90) is solved by a method analogous to that given in
[10].

Integration of (2.79) or (2.90) presents no essential difficulty
if performed with a computer.

Before giving results I consider some aspects that give a deeper
understanding of the nature of these effects.

12, Approximate Calculation for the Initial Section

It has so far been assumed that the calculation starts at some
channel cross-section where the flow has become stabilized and where

(for Re < 105) the form parameter for the velocity profile is constant
(as confirmed by experiment). The Reynolds analogy (also confirmed by
experiment) implies that the form parameter for the velocity profile
must also remain unchanged in this part. These two parameters are
equal for the main part of the flow.

It is of interest to find an estimate for the length of the
initial part (i.e., the distance from the inlet to the place at which
the flow has become stabilized).

The following method can be used. We assume that m and n differ
from their wvalues at the inlet (zero) but cannot be greater than 1/7

for Re < 105. If they do becone 1/7, they subsequently remain at that
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value. The curvature of the two profiles at the axis is taken to be
zero until they have reached T.

The two profiles are taken as being quite flat at the inlet
(m =n = 0).

We put £ = F = 0 in (2.79) to get three equations in u, m, and

n (©

o = 1 in this part, because F = O).

This system is solved up to the point where either n = 1/7 or

m=-1/7.
If at some point x = x, we have n = 1/7, m < 1/7, this implies

that dynamic stabilization has already set in, so for all later points
we must have n = 1/7 and must insert f in 82.79). The system is now
one of three equations (since ®l = 1 still) in the unknowns nm and ul

and the parameter f. We deduce f from the condition of compatibility
to give two equations for ul and m. The calculation then proceeds

until we reach the point x = X at which m = 1/7, at which point

dynamic and thermal forms of stabilization have been attained; Xon

is then the length of the initial part.
If at some point x = x, we have m = 1/7 but n < L/T, we have
an analogous calculation, except that F is introduced instead of f.

Of course, the actual effects in the initial part are much
more complicated, so this method is only rough and qualitative. A
more detailed discussion involves consideration of the possibility
of laminar flow at the inlet, which later gives way to turbulent
flow.

13. Calculations for Re > lO5

>

If Re > 10”7, the calculations become more complicated, because
the form parameter for the velocity profile is found to be variable
even in the main part of the tube; it is a function of Re,
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The universal logarithmic profile [37] should be used here, but
this causes technical difficulties in the calculations,

A simpler method is to use a profile of the type ulyn, in which

n is a function of Re found by experiment.

14, Flow in Circular Tubes

To assist the practical use of calculations on plane-parallel
channels I illustrate how the results can be applied to flow in
circular tubes.

The initial system of equations analogous to (2.8)-(2.12) may
be put as

ou k- 1
p u-——-+ Re v—)=- s1dp + - = | r(p+¢€) — ] , (2.91)
oy 2k d r dr iy
~ 3@ 1 9 o0
pl U~=4+Re v — )=- —| r(p+ €) — ] ’ (2.92)
dx 1 3y T or dr
o(pur) .~ 3(pvr)
—— + Rey = 0, (2.93)
Ox oy
= pT, (2.9)-'-)
2
® =T+ u. (2'95)

Here r is distance measured perpendicular to the axis of the
tube (r =1 - y); ReI is referred to the radius Ty of the tube;
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X = roRéI§ (ro and x are dimensional); and the radius of the tube is
the scale for the transverse coordinate.

Integration of (2.93) gives

4

1

dx

0]

Iet G be the total gas flow rate; then (2.96) gives

2 J purdy = G. (2.97)

We multiply (2.91) by r and integrate with respect to y for
the wall to the axis to get

1 1 1
du ~ du k-1 dp du 1
pur — dy + Re, | pvr —dy = - — — rdy+[r(u+e)--].
o 3x 0 3y 2k g% O or o
(2.98)
Now (2.93) gives
1 1
- 3u ~ o . 3(pvr) 3( pur)
Rel pvr — dy=Re_{pvrn]. - Re j u dy= j u dy,
a“‘ l l .1 ~ ~
0 X 0 ox 0 ox
and r, = 0, Ty = 1, €y = 0, and also
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2

AV

1
jrdy=f(1—y)dy=
0

So we have in place of (2.98) that

1

a
— 2 [ puPrdy + === k-1 2p.0< >o 0. (2.99)
ax 5 2k dx

Similarly, from (2.92) and (2.93) we have

1

f oulray + 2p0< = 0, (2.100)

a5 3
X 0 y 0

withr = 0 (i.e., y = 1) in (2.91) and (2.92).

Now

109 du pte 9

- — r(p+€)—]=-—-— r-—> <—+—— —
r Or dr r Oor 3r

2y (222,

so, since (aq/ar)l = (6@/ar)l = Oand e = O%, and with

¥A11 deductions remain true for 91 # 0.
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we get

du
1 k-1g ~ du
pu. —— + — _E + fu (—) =0, (2.101)
11 ax 2k dx 0 oy 0
d@l ~ 30
p_u - + Fn (-—— = 0. (2.102)
1143 3y “o

(2.96) and (2.99)-(2.102) form a system that defines the flow
parameters.

The velocity and temperature profiles are given as

u=uf, (2.103)

m
® -8 = (@l -8,)a, (2.104)

in which Q = 1 - r°.

It is readily seen that the integrals appearing in (2.90),
(2.97), and (2.100) may be expressed in terms of the integrals I,

T which have been deduced in this chapter,

2) IB}
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In fact
1 1 1
2 J purdy = 2 J purdr = p I = 5 an = le
0 0 O@-u

and similarly

1
2
2 j pu rdy
0

pl

1
2 j puBrdy
0

it

pI_.

This feature enables us to put (2.96), (2.99), and (2.100) as

a
= (le) = 0, (2.105)
a du
— () + &L L (—) =0 £.106
azx = @ ok d% O<3y>o ’ ( )
d fsc)
— (pI,) + 2 — = 0. (2.107)
dx 3 0 <: ay :z)

Further, (2.97) gives

pI; = G. (2.108)
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We replace y by Q in (2.101), (2.102), and (2.105)-(2.107) to
get

0

(2, (2, (), .2(2),

If now we put

X = LI-}'E = 4roRElx, % = 2f, F = QF’

we have a system identical with that considered in this chapter for
plane-parallel flow,

Here, as in section 3, we readily find that

8
Mo Suy
FE o T Nw
Re, Gu,,

As in section 6, we find that

1 M e

St = - — 0 (:
Fe, G 8 - @, ™3y

Dy

We determine p (au/ay)o and u, (8@/3y)o from (2.31) and (2.36);
with (2.103) and (2.104) we get

du _ Mg u Qé —
uo(: —_

ayo
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m
) _ 8% - % (®1 - ®o)05 _
-——)O = 6 = “6‘

”an

But Q=1 -172 =1~ (1 -y°) =2y(1 - y), so we have Q@ = 2 if
we neglect & relative to one, and then

all l'l"l___ a@ m-1__
vy Q <__ = ® - Q .

Tt remains to find QG in order to find the resistance and heat-

transfer coefficients. This is readily done from

u,b
— Rea,
Vs
hence
_ 1
2\)6Re6 ntl
Q =<

U

Then every result obtained for the power profiles (powers m and
n) for a plane-parallel channel can be transferred to a circular tube

having profiles in powers of the variable Q, provided the length scales
are suitably adjusted.

Tt is assumed that the diameter of the tube is sufficiently
large for its curvature not to alter the results substantially.

Note that the flow calculations for a tube can also be performed
with power profiles, but they are then more cumbrous.
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CHAPTER III

GAS FLOW IN A SYMMETRICALLY HEATED CHANNEL WITH
PIANE-PARALLETL, WALLS: QUALITATIVE ANALYSIS

Relationships simpler than those in chapter IT are derived
here, which enable us to deduce the characteristic features without
resort to computations.

Dorodnitsyn's variable [8] enables us to simplify the equa-
tions for the flow of a compressible fluid considerably. This
variable here gives us a system of equations analogous to (2.79) or
(2.90), but with very simple expressions for the coefficients.

We put

v
an
N=|pdy, v=|— (3.1)
| [~
0 o)
and
M 1
H=—, N = J" pdy, (3.2)
N 1
1 0

on the assumption that the profiles of velocity and stagnation tem-
perature can be put as

u=u i, (3.3)
®- 8 = (8 -0, ", (3.14)

The symbols for the form parameters m and n are as in chapter ITI,
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which cennot lead to confusion, because only the profiles of (3.3) and
(3.4) are considered here.

The relation of y to H is given by (3.1) and (3.2) as

l an dH
il Rl e
P
0 0 P
whence with the density
P 2 2
T O -
we have
H
Ty 5
y:-—-—J(@-u ) aH. (3.5)
P o

The powers of H in (3.3) and (3.4) do not remain simple power
functions in the physical plane (i.e., in y), so all the results given
here are somewhat qualitative; but they are of interest as indicating
the nature of the effects.

1., System of Equations
For convenience we rewrite (2.17), (2.19), (2.20), (2.27), and

(2.28) as

updy = Gl,

O e
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1
k-1
.d—jugpdy_'_—-d—p.}.uo(—au— =O,
dx 5 2k dx 3y “o
1
d 3@
— u®pdy+p.<-—— =0
dax 0N 3y 7 ’ (5.6)
0
2
du; -1 gp 9 u
it = s (),
11 dx 2k dx By2 1
ae 2
- 1 . <:a ®:>
11 4, 1 32 71

As in chapter II, we assume that (3.3) and (3.4) are applicable
right out to the wall in the computation of the integrals appearing in

(3.6).

Now

1 1
I ¢ (y) pdy = n f ¢ (y () ) aH,
0 0

in which 2 is an arbitrary function; then with

1
I = juaH - , (3.7)
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1 u2
I = J WPAH = ——tem (3.8)
u 2n + 1
0
1 m®o + ®
I, = f ®lH = 1 (3.9)
m+ 1
0
1
uy m@o + (n+ 1) ®l
Ig= J BudH = (3.10)
u n+ 1 m+n+1
0
and with, as in chapter II,
u du
“1( ) =7 f”o< ) ’
30 %
Ml (: 2.) - Fu0 <: ’
- 1 3y 70
we have in place of (3.6), by use of the equation of state,
=G .11
nllu 1 (5 1 )
d k-1 4 ou
— (T, ) +— =, b (——) - o, (3.12)
ax ok dx 3y 70
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d o8
— I —) =0 .1
ax (nl u®) *+ p’O (:ay 0 ? (3 3)
pu du.
1 k-1 a du
L o, %<__ =0, (3.14)
2 dx 2k dx oy
® -u
1 1
U ae fo(C)
1 1
— — s my <_> = o. (3.15)
® 2 ax 3y O
1 -

We also put y = H =1 in (5.5) to get a relation between
pressure p and the variable T on the axis ﬂl:

p="T (g - 1) (3.16)

From (3.11) we have

S S — (3.17)

T 1 dqu 1 dIu I®.-qu dul (£-1).
W(EE I IR (e

dx
1 1

(3.18)

From (3.14) with (3.11), (3.16), and (3.17) we have
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d d
ok Y duy ld1u+ 1 I@_qu ~
k-1 0 - u:% ax I dx Ig- I, ~ dx dx
1 du
2k
=-—=-=2( -1 )u (—)*. (3.19)
k-1 G 3y “ O
1
From (3.13) we have
d
1 Iu o8
(R Ly S 0By ()
T ) dx T dx
From (3.15)
ae ®
2.1 -—( ) F. (3.21)
dx u (I
The system of (3.18)-(3.21) may be put in the form
dul dn d®l dm
2, — 4% ==t D ==+ D) ——=1T (3.22)

il gx iz dx 13 dx ib ax

(i = 1, 2, 3 h).

The coefficients of (3.22) are readily found by the use of

(3.7)-(3.10).

The following table gives the general expressions for

these and also the results after the integrals (3.7)-(3.10) and their
derivatives have been inserted (the final expressions ). The expres-
sions have been simplified by the use of the symbol
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Coefficients in the System of Equations of (3.22)

Symbol General Expression Final Expression
et ——— ) —— — -u ——— ———————t—
11 uu 1 ® “uu 2
- Bul Iu aul 2m-1 ®l-u1
3 2
l IL'I_UI. l aIu ul
Z12 Tou (:-" —~ T = ’—':> - - >
T ™ I, o (1) (m+1)
Z 0
13 0
Zl)+ 0 0
u oL T u I+u?
. 2k 1 1 u 1 uu 2k 1 1 1
21 k-1 2 T du I -T du k-1 2 u 2
®l-ul u 1 uu 1 @l-ul 1 I-ul
] e ™ (en+ )]
22 - 2
Iy Igly,, oo (n+1) (2m+1) (T-u))
. 1 BI® 21 1
23 -
T Tu 201 m1 I-u12_
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Coefficients in the System of Equations of (5.22)

Final Expression

Symbol General Expression
1 9l ol 8y-0p
“2l I I am 2 . 2
® Tuu (m+1) I-ul
1 oL@ oI
Zog Iel — = _ L __u) 0
5 Iu® aul IU. aul
. ro( L Zf L Tuy B e e
u
2 I®du, I, dy 21 (ne1)?
fe) u
) I® )
33 28, mhn1
or,® 8y-8 .
Z ———
2 71
o am (mbn+1)
0]
Zhl 0
0 0]
o
1 1
ZMB
0 0
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1
(m8, + @l). (3.23)
m+ 1

= (2n + 1) Ig =

The right-hand sides of (3.22) are

il

Z l uo( ) (f'l);

1 n+1GaG
1
2
o ul uo I on +1 m d®o
7, - - 2 _)f-_.. =2,
k-1n+ 1 Gl 2n + 1 dy I- ul m+4 1l dx
ul o d@o
2, - - _< =2,
n+ 1 G n+lm+n+1 dx
@ -u?
Zh-=2n+ll 1 O<a®>_
0]
n+1l I-ud G %
1

A qualitative analysis is possible once the coefficients of
(3.22) have been determined. First I consider the crisis effect. In
order to include more complicated cases I start with one-dimensional
flow, then consider adiabatic flow, and finally the general cese.

2. Crisis in a One-Dimensional Flow

In this case p, u, and ® are constant in any given cross-
section; the last two equatlons in (3.6) become meaningless, while
the first three reduce to one-dimensional equations of chapter I:
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-1 4 -
w2 B2, (3.24)

in which E and ao denote the resistance coefficient and heat flux

together with some positive factors.

To these three we add the equation of state

P
p=2 = (3.25)

-2 w

- u

50
14 1 du 1 ae du
e g Z o —). (3.26)
p dx u dx 0 - u2 dx dx

We substitute for dp/dx in the second equation of (3.24) and
use (3.25) to get a system in u and ©:
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<k+1 ® du 148 ok €
— —— - — o - —,
k -1 u=~ dx udx k - 1 pu (3.27)
e _
—_=0q_.
dx 0

We solve this for du/dx and d8/dx to get

du f1 a®@ N
— -—, — = ""', (5'28)
dx A dx A

in which

k+1 ©
__.J; k+1 ©
A = k-l u2u = —-—2;
k-1 u
0 1
ok € 1
A = k=-=1lpuu
S _ p
95 1
k+1 @ 2% €
A2= k-1 u2 k+ 1 pu
0] qo

Iet A < 0 in the initial cross section, which corresponds to
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(local subsonic speed).

With ¢ 2 0 (i.e., assuming that the flow is adiabatic or that
there is an influx of heat) we have n, <0, so0 du/dx > 0, and so u

increases.

This increase is the more rapid the smaller the absolute value
of A. If ® and u are continuous functions of x, A cannot become
positive without passing through zero.

But for A — -0 we have, because Ai < 0, that du/dx - + ®, 80

any solution to (5.28) then becomes meaningless., 1If the flow could
continue in this way, we would have A > 0, so du/dx < 0. But ® in-

creases, so A = (k + l)/(k - 1) - @/u2 must decrease, i.e. A cannot
become positive, which proves our assertion.

The flow here is thus possible only up to speeds not exceeding
the speed of sound.

The condition for onset of crisis is very simple for the case

of one-dimensional flow: V- = (k - 1)/(k + 1), so the crisis occurs
when the speed equals the local speed of sound.

The number of wvariables increases if the flow is in more
dimensions (the form parameters for the velocity and temperature pro-
files appear), so the condition of onset becomes more complicated.

A necessary condition here is still A = O, in which A is the
determinant of the system. It is here much more difficult to decide
whether crisis actually occurs. I omit the cumbrous expressions and
assume that crisis occurs for qo 2 0, which is justified by the one-

dimensional theory and by the experimental evidence.
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3, Crisis in an Adiabatic Flow

Herem = 0, @ = ® =1, and (3.22) becomes

> 70 1

dul dn

7 e 7 e = 7 (3.29)

=7, ]

dx 12 3¢ 1
du

7 ot 20 dn _ 7,

2l ax dx

From (3.23) we have I = 2n + 1, while from Table 1 we have the co-
efficients as

2n ul
Z, = - ,
2n + 19 - 4°
o
2o = 5 >
(en + 1)7(n + 1)
~ u 2n + 1 + u2
7 2k 1 1 1
L xs11-vd uwoem+l-d
101 1
(en + l)2 + ui
Zop = = ’

(n+1) (en + 1) (2n+l-u]2_)
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u, M 3u
zl= 0 —-—) (£ - 1),
n+1¢G 3y 70
1
u, K on + 1 du
ok
Z,=- 120 2( > f.
k-1n+1 Gl on + 1 - u 3y 0

The relation of u, to n at the moment of crisis (if this ocecurs )

is found by putting A = 0, with

Then A = 0 igs found by substitution and a little manipulation

as
’k 2
W2 (on+1-u2) - (2041 +ud) (1-1u2)-2n [(2n+ 1)+ ul=0,

k-1 1 1 1 1 1
or

i 2

u, - 2Buy + C = 0, (3.30)
in which

B = (on + 1),

k+ 1

k=1

C = (en + 1) [1 + 2n(2n + 1)]1.

k+1
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From (3.30) we have

w2 - B i«/32 - c. (3.31)

We find the appropriate sign for the root by considering the
case n = O (one-dimensional flow). From (3.31) we have for this case
that

K & k >2k-l K+ 1
= + - = -

k+ 1 k + 1 k+1 k+1

which shows that we must take the minus sign in (3.31).

Figure 12 shows the relation of ul to n for the crisis point

(curve 1); only for n = O is the speed at the axis equal to the speed

2
of sound at the moment of crisis (ul = [(x - 1)/(x + 1)] = 0.408).

1/2
Then uy > [(x - 1)/(x + 1)] for n # 0, so the speed at the
axis exceeds the speed of sound at the crisis point.

The flow for the whole channel must be computed before one can
say whether a given combination of n and ul actually occurs at the

crisis point.

Before I give an example I shall show that n cannot be constant
near the crisis point.

As in chapter IT, I assume that n is constant at 04 (the value

for x

n/ 0) over some regions beyond the initial section. Then because
dn/dx

0O we have
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]
0,500 a

-

0.480

0,460

A\

P

0,440

0,420 \

0.400 ==

0.380

n
0 002 004 006 008 O 012 014 016 018 02

[Commas represent decimal points]
Fig. 12,
Relation of u; (speed at axis) to n (form
parameter ) near the crisis point: 1) at
crisis point; 2) at point where n begins

to change; 3) speed of sound; 4) variation
of form parameter in part preceding crisis.

Substitution for the elements and simple manipulation give

2
N Uy l<3u>[ ok W 2n(2n+1-ul)f
e n+l6 “% 0 k-11-u (2n+1)
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2
ok ul 1 2n + 1 +
-(z-1)( = - = u“;)], (3.32)
k~-11- ul g n + 1 - uy
so with AQ = 0 we have
2n + 1 + uf ok ui
> 2
k-11-
°n + 1 + ul ul
f = -
2 2 2 2
o U en(2n + 1 - w)) 2n + 1+ u ok Uy
k-11-u  (en+ 1)? 2n+l-u§ k- 11-uf

This f is close to one for u1 small; f decreases as u. increases

1
if n is constant, and it finally becomes negative when ul = ulf' This
means that A? = 0 is possible only until £ = 0, i.e.
u 2
ok 1 1 2n+ 1+ Uy
=— . (3.33)

H o

k-1, _ ui Y 2n+1-u

Let Xp be the x at which £ = 0; if x, > Xp, We assume that £ = 0O

everywhere in the range [xf,x 1, and in this range we do not have
c

A, = 0, so0 n cannot be constant from Xe onwards.

The relation of ul to n for x = Xf is given by (3.53) or
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k-1

N 2k [ 3k - 1 ] 2
u. - n+1 u. +
1 k41 Kk 1 x4+

(en + 1) = 0.

Figure 12 shows that any value of the form parameter differing
from zero can remain constant only up to certain speeds at the axis,
which are always less than the speed of sound. Only in the one-
dimensional case (n = 0) can the parameter remain constant up to the

speed of sound.

This indicates that crisis occurs for n > O only after n has
begun to vary, i.e., in the part where f = O,

In the determinant

we put £ = 0 to get

uy Mo < au> (2n + 1)2 + u]2_ ( 4
= = - "y 3-3
A _— -

(n + 1)2(2n +1) Gy n + 1 -y

which implies that Y < 0, 80 crisis does occur, and then du /ﬁx I -

because A < 0.

The variation in n between curves 2 and 1 of Fig. 12 may be
found from the relation of n to uq in this range. The simplest

quantity to find is

dn  an 99 %2

dul - dx 5;— Ai
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We put £ = 0 in (3.32) and divide by (3.34) to get

_k+
<5k'12n+ Srl M oo
dn  (n+1)2n+1) N\ k-1 k- 1 1 k-1 1
du
1 _2 2 2
ul(l ul) (en + 1) + u

(3.35)

Figure 12 (curve 4) shows results from numerical integration;
= 1/7 ~ 0.143 (up to curve 2) has been used here.

Figure 12 indicates that n decreases beyond curve 2, which
means that the profile flattens out in the precrisis section.

dn/dul tends to a finite limit as the crisis point is ap-

proached, as is easily shown from the fact that the second fraction
on the rlght in (3.35) becomes 2nd at the crisis point [this relation

of u; to n derives from (3.31)]. Then for x = x, we have

dn  (n+ 1)(2n + 1) 5

> n. (3.36)
du 1 - ul)

1 ul(

This means that in all cases where it is possible it is much more
convenient to perform calculations near the crisis point by taking
as our independent variable u;, not the longitudinal coordinate.

For x — x, we have duI/dx - + », while (3.36) implies that
dn/dx) = (an/au, ) (dul/dx) - - » at this point.

Consider the mean speed at the crisis point. We have from
section 1 that
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1
j pugdy

0 'ﬂlI
1
CEN LR (3.37)

1 M1 on + 1 1
1l u

I pudy
0

Figure 13 shows the relation of um to n at this point; only
for n = 0 is u, equal to the speed of sound, while for n >0 it is

always greater than that speed.

U
0,440
0,430 —
0,420 —_
0,410
0,400
0.390
0,380
0.370
0.360
0,350

n
0 002 004 006 OUo8 010 012 O 016 018 020

[Commas represent decimal points]
Fig. 13.
Mean velocity u as a function of form para-

meter n at the crisis point; the straight
line corresponds to the speed of sound.

The results may be summarized as follows.

Adiabatic flow in a plane~parallel channel is possible with a
constant velocity-profile form parameter n only up to certain values
of the speed at the axis, which are less than the speed of sound.
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Past this point we have a precrisis section, in which the form para-
meter must decrease (the flow is accompanied by flattening of the
velocity profile). The crisis sets in when the speed at the axis
and the mean speed exceed the speed of sound; dul/dx - + o and

dn/dx - - o simultaneously as x — Xaoe

k., Adiabatic Flow: Behavior of a Stream Tine
Near the Axis of the Channel

The possibility of transition through the speed of sound near
the axis is a consequence of the special conditions that arise in
the precrisis part. These conditions can be found by considering
the behavior of a stream line near the axis,

let v = y(ui) be the equation of a stream line in coordinates
¥y and ui (Fig. 14). The flow rate between two such lines (in par-

ticular, between a line and the wall) must remain constant:

y
j pudy = Gy = const,
0
or
Ul H u .
n+
J udl = ﬂl J udH = ﬂl H = Gy = const.

n+ 1
0 0

But from (3.7) and (3.11) we have ﬂlul/(n+l) = G, S0

1

- (—zl-)n " (5.38)
1
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H on a stream line is thus constant while n is constant, and
decrease in n is accompanied by decrease in H,.

0,9750‘ T
0,9745 ] '
0,9740 Lo
09585 —+— e T o
0.9580 e I

0,9575 S T U . S
0,9570 AL 1 b 1 u?
0100 0120 040 0/60 0180 0200 0220

[Commas represent decimal points]

Fig. 1L,
Behavior of stream lines near the axis

of a channel. The precrisis section
starts at AA. Gy/Gl as follows:

1) 0.97; 2) 0.95.

(3.5) gives the relation of y to H, is we put ® = 1 (since
adiabatic flow is envisaged):

=3

1
Y = (1 - u°) aH.

P

O e

From (3.8), (3.9), and (3.16) we have

2n+l

2n + 1
y: (H‘ul

2n + 1 - u

)

°n + 1

or
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(3.39)

e
Ii
=]

This last equation shows that y increases with uq when H is

constant (i.e., n is constant), because H < 1; the lines converge on
the axis. In the precrisis part they start to diverge slowly (Fig.
14), which produces the conditions for the transition through the
speed of sound near the axis not far from the reversal of gradient
in the stream lines (see chapter I).

5. Physical Meaning of the Crisis
This can be elucidated by considering the behavior of the
stream lines throughout the channel.
Subsonic and supersonic speeds both occur in the precrisis
part. The equation for the line of transition through the speed of

sound is found as follows. The speed of sound corresponds to u =

2
= [(x - 1)/(x + l)]l/ , 50 on this line we must have

k-1 n
= u H 3
k+ 1 1

hence
1
:LJk-l n
H=( — (3.40)
<:u1 k + l:)

in which uy and n are related by (3.35), which has been integrated

above (Fig. 12, curve 3).

We substitute for H from (3.39) and (3.40) to get the relation
of y to ul. Figure 15 shows the transition line OK, which indicates
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that the transition occurs first at the axis (section QA) and then
spreads outwards to the wall. O'K is the crisis section.

y

10 S e L g

)

08 \
06 X

0,4 NS
» —‘\K

0,2 Ay

oLA &
040 042 044 046 048

[Commas represent decimal points]
Fig. 15.
Line of transition through
the speed of sound: 1I) sub-

sonic region; II) supersonic
region; OK) transition line.

Consider the behavior of a stream line close to that passing
through K.

Subscript K is used with the quantities here, and (3.39) is
written for this point to find H . Then (3.38), with n = n., gives

us (G /Gl)K for this line through K; we give Gy/Gl values close to
y

this to find from (3.39) a series of lines close to that passing
through K.

Figure 16 shows the results; the stream lines diverge near K,
the degree of divergence scarcely varying from line to line.
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The resistance increases as the wall is approached, so it is
clear that & current tube near K shows the following effects. The
resistance and degree of divergence in tube 1-2 are such that the
speed can pass through that of sound, whereas an elementary tube
enclosing K has a relation of resistance to degree of divergence
such that this transition cannot occur; local crisis occurs in this

‘tube.

S ] -
o34s| | I-FH LT H HA+ \
0343} - ' RRE
0.341
0339
0.337
0335
0,333
0,331

0.329 LL] ] T LT
0,450 0455

T N
N

]
I
I
|
|
i
ey Ty
t

| AN
1
i
[
L1
T
1 ’——

13

I
|

i ‘
[
'l'
/

I

I A

=

—

- .

60

Ly e
I
]
|
|
F

T
I
NN NN e
'.
T
foneet
f
T

T
N

[

T

T

I
FYER

[Commas represent decimal points].
Fig. 16.

Physical meaning of crisis: KK' transi-
tion line; 1 and 2 stream lines.

The crisis is thus due to the impossibility of transition
through the speed of sound for one of the stream lines.

6. Resistance Coefficient for Adiabatic Flow

In section 6 of chapter IT we derived (2.37) for the resistance
coefficient, which for an adiabatic flow may be put in the form¥

*¥Tt is assumed that Mg ~ 1.



126

¢ = - Lt (3.41)
ReG

lum

6 in (3.1) and neglect u° as being

il

Let H = Hg; we put y

y': 5
small relative to one to get

: a
y
ﬂ6=jpdy=pj ~ b,
0 Ol"u
sO
p
H=—28.
T

We find p/ﬂl as in the deduction of (3.39) to get

on + 1 - ui
H6 = 6-
2n + 1
(2.32) gives us & as
u.é
Re = Re§ = 157,
Yo

50, with¥ vo = ”o/po = 1/@, we have

¥B = 1 is the assumption in (2.33).
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n
2n+1-u n+l
= . o
—— )s P = 157 (3.42)

We find p from the equations used in deducing (3.39), namely

=MN(1-1 ), ¢ =M1,
1 uu 1 u

S0

2

1 - I]m 2n + 1 - u7n+ 1
1 I L on+1 u
u 1
This p is inserted into (3.42) to give
1
n+l
s _ e+l 157 1 i)
en + 1 - u2 G Re n+ 1
1 1
Then (3.41) readily gives
o) l—n
8 2 GJRe T+n
g n+l<l-2 +l>|: (n+l)]
ReG n + 1 n
1

(3.44)
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Figure 17 shows § as a function of M, as calculated from (3.L4).

There is a substantial rise in [ after some decrease, which
might at first sight appear to conflict with experiment [6, 31], which
indicates that { decreases rapidly as the crisis is approached*. The
conflict arises because the experiments were worked up in [6, 31] on the
assumption that the flow was one-dimensional up to the crisis point.

We shall see that this leads to results substantially different from
those given by a more detailed study of the precrisis section.

{
0.019 //
A
0,018
0,07
\X P
] /,
0,016 M,

0,75 080 0.85 0.90 0,95 10

[commes represent decimal points]
Fig. 17.

Relation of § to M*.

Iet w be the mean flow speed; this is related to the pressure
via (3.37) and (3.43) as follows:

¥Results analogous to those of [6, 31] were published elsewhere [59] as
this manuscript was being prepared for press.
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p=G - . (3.45)

The above workers used this with n = O, together with the equa-
tion of continuity, to deduce the mean speed from the measured pres-
sure distribution. In fact, n is small and decreases as the crisis
point is approached, so the speeds found in this way are very close to
the true ones. On the other hand, the resulting £ are substantially
different from those given by the full theory.

The reason is essentially that within the framework of the one-
dimensional theory it is impossible to obtain a speed in excess of
that of sound.

We have already seen that the crisis occurs at speeds in ex-
cess of that of sound, although not by very much; but this radically
alters all our concepts and causes a variation in § quite different
from that derived from one-dimensional considerations.

This point is of considerable importance, so I consider it in
somewhat more detail.

As in [6, 31], we deduce { from (2.25), but here we allow for
possible change in the velocity profile.

From (2.25)

c 8 k-1 dp dw
wRe 2kGl dx dx

We derived dp/dx from (3.45) and convert from w to M, on the basis of

(1.47) to get

EoERL 2, eyl Mk (3.46)
Re k M3 dx
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in which

2 2n+1 dn>

n 1 —_—
s = E:( non + 10k amM,” * (3.47)

(3.46) shows that the change in profile causes us to add to the
{ found in the usual way (termed CO)

bk + 11 - Mg aMy
% % & M  ax (5.48)
a correction AG:
Lb ¥ +1 8 a
al =2 EFL S e (3.149)

Iy 3
Re k M* dx

N

in which § is given by (3.47). We have seen in section 3 that dn/dul
<0, so dn/dM* <0, and hence & = 0 at all times, whence from (3.49) we

have A = 0.

Then

C =0 +1C, (3.50)
0]

in which the terms are given by (3.48) and (3.49).
AG is not important while M € 1, the more so since n € 1; hence

€ is quite small.
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However, Co = 0 when M -~ 1, because (a difference from the
*

one-dimensional case ) dM*/dx - @ only when M* - M, > 1. Then
c
the behavior of { near M* = 1 is completely governed by that of AL,

which (5.&9) shows to increase as the crisis point is approached.

The treatment in [6, 31] gave QO, which is close to § only if

M <1,
¥

The § of (3.50) has, from (2.37), a definite physical signifi-
cance: it is the ratio of the frictional stress at the wall to the
mean momentum in that cross-section. This is merely a calculated
quantity and has no direct physical existence. Deductions on the on-
set of crisis from boundary-layer theory reqguire that { should be-

have as in Fig. 18, as implied by (3.48). We must have dM¥/dx - 4 ®©

for M* > My > 1, so (3.48) gives Co Do @ for M2 My, M, is

close to one, so { must fall rapidly as M* - 1, as is found [6, 31].
0

M-

.-____________#i
£3

Fig. 18.

Relation of £ to M .
0] *
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€ > 0 always, so (3.49) gives Af = + ® for M* - M* ; then
c

€ tends to a definite limit as M, — M, (Fig. 17), and the approach

to the crisis point is accompanied by an increase in the resistance

coefficient,
Note that (3.46) gives us a relation of n to u, near the crisis

point. With dM*/dx = ® we have

1 - M2 + & = 0.
*

Tt can be shown that this equation agrees with (3.30).

These results show that the [ appearing in the one-dimensional
equations must be determined for the changing velocity profile near
the crisis point. This means that we cannot determine { from the
pressure change and conditions of continuity alone; experimental de-
termination of { is meaningful only if the frictional stress is
measured directly or if the velocity profile is recorded. In either
case the experiments are very difficult, because even small perturba-
tions can cause major disturbance near the crisis point.

The experiments reported in [6] provide a general confirmation
of the present theoretical deductions. These results [6] reveal an
obvious discrepancy between the pressures measured on an end section of
the tube and those calculated from the one-dimensional theory of the
critical pressure. The actual pressure was less than the calculated
critical value, which points to the attainment of supersonic velocities

at the exit.

T. Initial Section of an Adiabatic Flow

Section 12 of chapter II implies that system (3.29) must be
integrated subject to f = O for this case, the initial conditions being

n=0andu =u at x = 0.
1 i
(3.35) describes the relation of n to u) in this section, and it

indicates that dn/dul > 0 for uf < [(k - 1)/(k + 1)] (subsonic speeds at
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inlet), S0 n increases with u, from O to 1/7, which corresponds to the

1

initial (stabilization) section (for Re < 105). Figure 19 shows re-
lations of n to Uy celculated by numerical integration of (3.35) for

u, of 0.122 and 0.061, vwhich correspond to M, of about 0.3 and 0.15.

This section then begins at uI/u of about 1.17 and 1.14 in

11

the two cases.

n
0,15 - I
A
“RBPd
] AL
0,10, 11 _M-._A,/';/-'/,‘.A I
e _ /
B A
e ’“V//'/
SRR Z4R
A Zd
74N 1]
V4
o

10 102 104 1068 108 110 112 14 16 Uy
e
[Commas represent decimal points]
Fig. 19.
Relation of n to uq for the initial sec-
tion of an adiabatic flow; uy:

1) 0.122 (M*i ~ 0.3); 2) 0.061 (My; =~ 0.15)

The length of this section is found as follows: (3.29) gives
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duy Ay
—_ ==,
dx A
1o}
U1
A
X = — du_.
Ai 1
u,
i

The relation of n to ul derived by integration of (3.55) should

be used to compute this integral.
Figure 20 shows the relation of n to Rex/lt.
This gives a length much less than that found by experiment

[23,49] (see chapter II), although the computations agree with theory
[45]. Calculations on this part need further refinement.

015 l
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[Commas represent decimal points]

Fig. 20.

Relation of n to ratio of length to
hydraulic diameter of channel for

Mg; of: 1) 0.3; 2) 0.15.
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8.

Crisis in a Flow with Heat Transfer

Here we derive relationships analogous to those of section 3,
but with m # O and ® # 1 (heat transfer present).

The determinant of (3.22) must be equated to zero to find the
conditions of onset.

From Table 1 for 2 = 7 =Z =2 =Z =
3 14 31 Lo 4L
= 0, we obtain
le ZlE ©
Z Z 7 = 0. 51
21 22 24 (5.51)
0) Z 7
32 34

Inserting the coefficients and rejecting the trivial solution
®l = ®3, we have

o (o) - (@) (8- ) -

- (1 - @l) [ (en + 1) 1 + ui + m.<:2n F o :f (8 - @) ] =0,
m+ 1

or
ui - 2B'u2 + C,

1 =0, (3.52)

*System (3.22) consists of two equations, not four, if ®l = ®O.
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in which

or  E-1 [1+(2n+1)1(1-1)+m(___.). (e, ©,)(T - 8)]

k+ 1

as I is given by (3.23).

As we would expect, (3.52) becomes the particular case (3%.30) when
= 8, (or m = 0).

@
!

Now Uy is referred to the limiting speed at the center of the

channel at the inlet. The stagnation temperature @ of the gas, and
hence also this speed, varies along the length and along the width, so

it is best to use the speed referred to the corresponding limiting speed
in order to characterize effects in any section of the channel, including

the critical one. From (1.46) we put

ve 2 = %
ul JO
But V S'Vl if the gas is heated; 1in fact, in this case

®; <® <8;, 80

Vg v < %

- Te Jeo 1

We divide (3.52) by ©° and put
1

I 2n + 1 )
—_—=__(um_09
0 m+ 1 )

1 1

J= + 1),

to get
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L 2
V- 2BV +C =0, (3.53)
in which
k
B = J,
k+ 1
K - 1 on + 13- %
C = [J+(2n+l)J(J-l)+m<n ><——-l>(J-l)
k 4+ 1 m+ 1 ®l

As in section 3, we can show that the required solution of

(3.53) is

Vo =B -N B -c. (3.54)

There is a definite relation of ul to n for adiabatic flow;
(3.53) shows that the relation of u, to m and n at the crisis point

is also affected by ®o/®l in the case of heat transfer.

Figures 21 and 22 show results from calculations for Vl at the
crisis point for ®O/®l of 1.5 and 2. The crisis point can occur for

various combinations of m and n; as for adiabatic flow, we have to
consider the flow in the whole channel to determine whether it will

actually occur.

T will show that the two profiles flatten out as the crisis
point is approached if the gas does not cool. From (3.22) we find
that
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Fg. 21. Fig. 22.
Relation of Vl (axial velocity at Relation of Vl to m and n for
crisis point) to m and n for ®O/®l =2 form of: 1) 0; 2) 0.06;

®C/®l = 1.5 and m of: 1) O;

3) 0.12,
2) 0.06; 3) 0.12.
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dn dn 1
du dx dx

dm dm

du dx dx

in which the A are determinants. We substitute for the cocefficients
and apply (3.53) for the crisis point to get that

dn _ _n+120+1 @ (g - 1), (3.55)
du u ©® -u
1 1 1 1
dm _ _m dn (3.56)

du n + 1 du
1 1

@O = @ if the gas does not cool, and
1

)
_ent+ 1 m_9+1>22n+1>1,

J
+ ®
m 1

so (3.55) gives dn/du < 0, and (3.56) gives dm/du < 0. Continuity

1 1
implies that these inequalities must also apply in the neighborhood of
the crisis point, so the two profiles flatten out as that point is
approached.
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9. Transition Through the Speed of Sound Near
the Axis of the Channel

Figures 21 and 22 show that the speed at the axis exceeds the
speed of sound at the point of crisis when m #O0and n# 0, Itis
also easy to show that the u of (3.37) exceeds that speed at that

m

point.

This possibility is related to the special behavior of the
stream lines in the precrisis region, as in the case of adiabatic flow.

This can be demonstrated from the theory of the boundary layer
[26]-

For simplicity I consider only laminar flow, because turbulent
flow does not differ essentially from laminar, and we are interested
only in quelitative results.

From (2.11) and (2.12) we have

so

d 3 3@ du
_B = (@ - u_2) -9 + p = - 2up — . (557)
dx X Ox dx

From (2.10), the equation of continuity, we have

dp P/ du ~ OV > ~ v 9
— =~-~-\—+Re — J-Re - — ,
ox u - ox dy u oy

in which from (2.11) and (2.12) we can make the substitution



i

1h1

du 3@

- = 2U — = - = 2Uu —— =~ -
dy - 22( dy @_u’a( dy ay>’
sO
3 - o) o) 3 ~ O
om0t —1-1+Re—‘—f>.
ox w(® - u2) dy dy u > Ox dy
This dp/3x is inserted in (3.57) and (2.12) is used to give
a o - d
2okl au) B2, )2 2,
dx u dy dx dx
Then (2.12) is replaced by
% ~ du k-1T,3%u . v k -1 du W
U~ + Re V e = e - = 4+ Re = + 20 «= -~ — +
dx dy 2k u - 9% dy ok 3x  dx
k-1 . du 3@ 3 du
+ Reg 2U == = — %—-(u-—),
ok 9y dy p o 3
or
oy k-1T3dwuw k-1 & ~ ¥y k-1T ~ dv
U =~ = = =« = = e y— =~ Re v - Re =—~ -
ox 2k u k ox oy 2k u 3y
k-1,38 . ¢ 0 k-1 ~ du 109 du
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This last, transformed slightly with the aid of (2.9), may be

put as
2 k-1 T
w77 Su c v k-1 T3 120 (: du
— = ~-Re - -7 + e = — + = —( p = -

xu % k 9y 2k u oy p Oy 3y

k-1 _030 v o® k~1 ~ du

- — -+ - - )+ Re v. =— ,
2k dx k 3y k dy
2

ouS/T(k - 1) and further manipulation,

Q
B
)
(_'.
fay
=
Il

2
k -1 d  ~ wod k-1 00
— - (1 - ME) -— = Re v ég IRy + —_— — -
2k 4 Ox k ay kp ayz 2k pu By2
1% % k-1 13udW® k-1 ~TDO
- — — — 2. Re - =— . (3.58)
p Oy oy ok Pu dy dy ok u dy

Here au/ay > 0, because the speed increases from wall to axis,
2 2 . R . .
and 9O u/By < 0, since the velocity profile is convex downstream. 1In
the case of heating, B@/By < 0 and 32®/By2 > 0.

Further,
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because

dp 5 0, ® . 0, Su o 0.
aT dy oy

v > 0 at the start; v = O at the axis, so 3v/dy > 0 near the
axis.

Then all the terms on the right in (3.58) are positive near the
axis, so Bu/ax > 0 (velocity near the axis increases) for M < 1.

Balancing of the heating and frictional effects is possible only
if v <O for M = 1 and later points. This means that a stream line
that approaches the axis at the start will come closest to it at some
point and then will bend away again.
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CHAPTER 1V

RESULTS OF COMPUTATIONS

1. Selection of Conditions and Computation Parameters

The general deductions made in chapter III lead us to perform
computations designed to elucidate the effects of various types of heat
influx on the coefficients of heat transfer and resistance, and also
on the onset of the crisis. I begin with m = n = O (initial part).

We put B = 1 in (2.35) for simplicity; (2.79) is solved (the
wall temperature is assumed given). Re > lO5 is avoided, and also the

region of very low Re, by means of a preliminary estimate of the
variation in Re along the channel; the one-dimensional theory can be

used for this,

From (2.57) we have

Re = 4 Re P ,

so, using the equation of continuity with T = T/@, we have

j=s]
[¢]
b
°
=
H
|
=
|
H
=
]
4, 2
'._I
@+
e

because the temperature scale has been chosen to make ®i = 1. Ref/Rei

will be governed by M*f and ®O if the flow is taken as far as the crisis

point (i.e., to M, _ = 1):

*T
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Re 01

—= . (4.1)
Re; T(1) 0,

For sdiabatic flow

7% T R O O 0 B N

N M,
ar 02 03 04 05 05 07 08 o9 w'T

Fig. 23.
Relation of ratio of Re to Re against M__ for
T i *i
adiabatic flow; M = 1,
*f

Figure 23 implies that (Ref/Re_) is sufficiently close to one
i'a

and varies little with M, for M, < 0.5, so we are reasonably free to
i i

choose M*i' Reascnable limiting lengths for the channels are obtained,

together with only minor effects from compressibility at the inlet, by
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putting M. = 0.3; then Re /Re ~ 1.18.
*1 fooi

(4.1) shows that Ref < Rei for sufficiently high degrees of
heating; but Rei < Ref for adiabatic flow, so Rei must be chosen from
the condition that Rez <107, so Re < Re, < Re: < 10°. With Re, =
=8 x ILOLF we have Re: <1,18 x 8 x lOlL < 10°.

~ 6.8, so (4.1) gives

i <
(1.63) gives us ®f, for ®f ®f‘§ 0

Ref >1.h x lOu.

T consider only cases in which the temperature does not decrease
along the length.

= 1.1 and ®of/®oi <5 we get @f < ®of < 5®Oi = 5.5,

With ®
oi

Then a rise in wall temperature by not more than a factor five
is bound to give us the required range of variation in gas temperature.

The limiting length of the channel can be estimated with § = 0.022,
which corresponds to an average Re of about 4 x lOu.

Heat supply at the exit gives us ﬁéi&/h = 265, from (1.55),

(1.56), and (2.7) together with the fact that the hydraulic diameter is
twice the width of the channel.

The limiting length is less in the general case of heat transfer,
so, 1f we assume that the wall temperature reaches ®of = 58  when
ol

Rex/4 = 265, we certainly have ®of < 5®oi when x reaches its limiting

value,

Iinear and exponential forms are taken for the relation of ®O to

X3



147

1~
1 AL Rex
@ = = @. <l + e 2 )
¢} o T :

With ® = 1.1 and ®O = 5®Oi for Rex/l = 265, we have two equations
oi
for @ :
or 8,
8 L Rex. "
o = 1.1+ 0.015 ; Rex, (k.2)
1.1 (i 0.0083 % %E%)
®O=; 1+ e . (IL-B)
2

It is also of interest to examine a fixed small wall temperature

® = 1.1 and also adiabatic flow (@O = 1).
o

There are then four distinet distributions:

Io ®O = l,
II. ® = 1.1,
(@]

III. @ =

1.1 + 0.015 i Rex,

1o
v, ® - Ll.1 <i + e 0.0083 - Re%)
. = —5— 4 .

Tt remains to find the initial conditions and the constants.

We assume m = n = O for x = 0, also, ®li = 1, in accordance with

the choice of temperature scale, and M,, = 0.3, which corresponds to
p ) % P)
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u = 0,122k,
i
The initial conditions identical for all four cases for x = 0
are then

u, =0.,1224, 0O =1, m=n = O.
1

ﬁé and Gl are also the same for all.

We have from (1.57), p = p/T, and u = T that

Here

D, = 11(0.3) = 0.9485, T = T(0.3) = 0.9850, u, = 0.122h
1

~t 5
and so Re = 1.68 x 10 .

Gl is found because m = n = O at the inlet, so

II(M*l Yo,

¢, - V/k - 1.(;

1 - k+ 1

£>k g(M*l

For air



149

G, = 0.259g(M ),

SO

G, = 0.259 g (0.3) =~ 0.118.

2. Sequence of Computation

A numerical method may be used to program (2.79) for computer
solution. The following feature must be taken into consideration here.

The computation for the initial and main sections is performed
in three stages.

Stage I

We assume f = F = O, this stage ends when we obtain either n =

= 1/# orm=1/T7.

Stage II

1, Ifn = 1/7 at the end of stage I, we have n = L/T and F = 0
everywhere in stage II, while f is given by the condition of compatibility
for (2.79):

" 7

Wpg Moy Ny | ) Mgy My Iy

N N !

F o= o1 Vo) Ny Noy N Ny
N_ N, N N._ N, N

31 34 73 31 34 73

The integration is continued until m = l/7.
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2. Ifm =1/7 at the end of stage I, we have m = 1/7 and £ = 0
everywhere in stage II, while F = (d® x)/N e

The completion of stage II brings us to the end of the initial
section.

Section IIT

This stage corresponds to the main section, which is computed
withm =n = l/%, f and F being found from the condition of compatibility
in accordance with section 10 of chapter II.

3. Adisbatic Flow

Figures 24-28 give results for adiabatic flow (case I of section 1)*.

Figures 24 and 25 show that £ = O waenu = 0.4 |, son cannot
1

remain constant for u > 0.4 if we assume that (2.79) still applies,
1

since this would imply negative f, which is impossible [see (2.82)1.

This means that we must assume that n +varies for ul > 0.k, The only

acceptable assumption for f in boundary-layer theory is f = O for
u > 0.k,
1

Then df/dx (for f as a function of X) is discontinuous at
¥ 345.5 (Fig. 26; this corresponds to uy = 0.4), so it would be more

correct to assume that n starts to vary as £ — O,

However, this introduces no major change into the results: Fig. 27 /lOf
shows that n varles only very slowly for X > 345.5, which indieates that flat="
tening of the profile in the precrisis section. The qualitative de-
ductions of chapter III are thus confirmed, Figure 28 shows the change
in the wvelocity profile in the precrisis part.

Special attention must be given to the results for the initial

%A11 curves in this chapter are given as functions of X = Rex/l (i.e.,
of the current length of the channel referred to the hydraulic diameter).
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section, whose length is found to be small relative to values indicated
by experiment [23, 49}, as in chapter III.

LT

04| | I'H 5
o3l [ 14 | HA-E
] B /

SHA A

R - oL 3 ’/

e
O,L]L‘ff;_T’m”‘
’ 100 200 300 350

Fig. 2bL.
Mean speed um and speed at channel axis u:L as

functions of X with adiabatic flow for the main
section: 1) u ; 2)u .
m 1

However, the results obtained here show that better agreement
with experiment is obtained if the computation is performed with some
care. Tigure 25 shows that f jumps from O to 0.963 at X = 12.6 (Jjunction
of initial and main parts); if we eliminate this discontinuity (e.g.,
by & method analogous to that given in [29] for laminar flow), we find
that the length of the initial section increases.

4, Flow With Heat Transfer

Cases II-IV of section 1 apply here; Fig. 29 shows that m > n
in the initial section in cases IT and IV, while m < n there for case
IIT. In case IV m and n become 1/7 almost simultaneously; in II, m
reaches 1/7 earlier than n; and in III, n reaches L/Y before m.

The various modes of inflow of heat thus cause different modes
of variation in the form parameters in the initial section.

"
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Fig. 25,

Relation of f to current length of

channel for adiabatic flow.
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Fig. %6.

Relation of f +to current length of

channel for adiabatic flow in the

precrisis section,
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section for adiabatic flow.
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Velocity profiles in the precrisis
section.
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F and T are both different from zero in the main section; there
is & stepwise change in f or F at the transition from the initial sec-
tion (Fig. 30).

The discontinuity in f or F leads (as in case I) to a consider-
able reduction in the length of the initial section as compared with

m.n mn
014 1@ = 074 -
013 5A19 - 013 /’V/

012 ava 012 A A
. [/ A3 )94
ol /AW o A
010 1) 0,10 /v
0,09 ; 0,09 /;
007 007 /i
0,05 0.06
0,05 0.05
004 4 0.04 l//
0,03 0,03
002 00214
0,01 # 0.0
X
0 2468 101214161820 Y 9T 7345678910
Fig. 29,

Relation of m and =n to X for the initial sec~

tion of channel: 2), 3), and 4) are for m; 1II),

TIT), and IV) are for n., 2) and II) are for case II;
3) and III) are for case III; and 4) and IV) are for
case IV,

experiment.

The calculations on the initial section need further refinement,
but the results already show that substantially different types of flow
can occur there in response to different modes of influx of heat.

The derivatives of the form parameters are discontinuous, as

g
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are f and F, but the transition to the main section is reasonably
smooth in all cases (Fig. 30), which indicates that a revised calculation
for the initiasl section would (at least in some cases ) not lead to any
substantial change in the velocity and temperature as functions of X.

W .
1,30 g
1,205 — =3+
110
,'00 = 7 - // - T
090 t+—1 t
080l N-L/
0701~ g 3 A
0.60 — B s R S S ma

\
\

i ”L,/ , P
o

[N
i

0.50{— : -1
040} ~ : 11T 1T TN

!
030+ . I R N

0204 . ] INL L \
0,10+~ N A 1A \

L 1. _1_
10 20 30 40 50 60 70 80 90 100 110 120 130 140150 160 170 180

/4

1,20 1-—~ —
100} - 2 .
osotfi-| 1 - T T Tl
0,60 e et N

o0t . \L
0,20 : P e T

20 40 60 80 100 120 140 160 180 200220240260280300 320340

Fg. 30.

Relation of f and F to X:2), 3), and h)
are for £; II), IIT), and IV) are for F.
2) end IT) are for case II; 3) and III)
are for case III; and 4) and IV) are for
case IV.

At some X = Xf (which varies from case to case) we find that f
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Relation of ul and ®l at channel
axis to X near the junction between
the initial and main sections for
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Fig. 32.

Relation of n to X for the pre-
crisis section:

a) case III; D) case IV.
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becomes zero for all cases with heat transfer; calculations withm =n
= 1/? would then make f negative, so flow in the range X > Xf with m =
=1n = 1/7 would be impossible. We must assume that £ = O for X > Xf.

A difference from the adiabatic case is that various assumptions can

N~

\ ,
ool || || |-
g:ig _-‘A“ ~ 1 - =3
0.60 j\\‘\\i\fj
050 s

M,
2of L TS S

020;- {-- R R
010} | - - \ \

I
/

/o

0720 30 40 5060 70 50 90 100 110120 130 140 150160 170 18

Fig. 33.

Relation of £/F to X: a) case II;
b) case III; c) case IV.

be made about the behavior of m and n for X >X . It can be shown
f

that we cannot have m = n at the crisis point and that m varies much

more slowly than n near that point. On this basis the precrisis

section has been computed subject to the simplifying assumption that

n varies, f = O, and m remains constant. Figure 32 shows the relation

of n to X for the precrisis section, from which we see that n in

these cases varies much as in adiabatic flow.

The results show that Reynolds' analogy is almost correct over
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Relation of u and u to X for the main
m 1
section: 2), 3), and 4) are for u ;
m

II), III), and IV) are for u . 2) and
1

II) are for case II: 3) and III) are for
case III; and 4) and IV) are for case IV.

a fairly wide range (in the main section of the flow); but the method
does not allow us to establish precisely where this analogy begins to
fail.
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Relation of wall temperature ®O,
stagnation temperature at axis @,

and mean stagnation temperature ®
m

to X for the main section:
2)-k) ®;  1II)-1V) ®5 b)-d) @ ;

m
2), I1), and b) case II; 3), ITI),
and ¢) case III; L4), IV), and d)
case IV.

The following factors may lead to fairly early failure of the
analogy. Figure 335 shows #/F as a function of X for cases 11, IIT,
and IV; f/ F represents the ratio of the curvatures of the velocity
and temperature profiles at the axis, and it is clear that this ratio
decreases continuously and is always less than one, so the two profiles

at the axis are not similar in the strict sense even at the very start
of the main section.
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Fig. 36.

Relation of { to X for the main part: 1) case I;
2) case IT; 3) case III; L) case IV.

The discrepancy increases with the speed and ultimately causes
the two profiles to lack any similarity at all.

Figure 34 shows the velocity at the axis and the mean velocity
as functions of X for the main part for ceses II, III, and IV,

Figure 35 shows the relation of wall temperature, stagnation
temperature at axis, and mean stagnation temperature to X for the main

part for the same cases.

5. Coefficients of Resistance and Heat Transfer

The computations for the initial and precrisis sections need re-
finement, so I give results only for the main section.

Figure 36 shows that £ in all cases does not vary greatly within
the main section, but the mode of variation differs from one case to
another. The differences cannot be explained solely in terms of dif-
ferences in Re and M; the different modes of influx of heat play a

major part.

Reynolds' analogy applies to the main section (our basic assump-
tion), s0 the heat-transfer coefficient varies there in the same manner

as the resistance coefficient.
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CONCTUSTONS

Calculations on turbulent gas flows in channels in the presence
of heat transfer are very complicated; great difficulties arise in
obtaining practical solutions even in the simplest cases, because the
theory of turbulence is far from being completely worked out. Practical
requirements demand suitable approximate methods.

One of these is the semiempirical method long used in hydrodynamics;

its basis is that experimental evidence cobtained over a restricted range
of conditions can throw light on the effects of those conditions over
a wider range.

Here T have tried to develop a semiempirical method of calculat-
ing subsonic flows in pipes subject to an arbitrary influx of heat
through the wall,

The following experimental evidence is used:

1. The form parameter for the velocity profile has a clear-
cut relation to Re for fairly low subsonic speeds in the absence of
heat transfer; in particular, this parameter is constant for Re < 10°.

2. Reynolds'! analogy applies for a certain range of varia-
tion in the conditions at the wall.

3. The thickness of the wviscous sublayer is given by
uas/v = R%Sin the absence of heat transfer; here Re8 is the turbulence

constant. It is assumed that Re6 remains unchanged in the presence of

heat transfer, provided that some mean value is taken for the viscosity
of the sublayer.

This method may be extended: we may replace Reynolds' analogy
by the assumption that there is a definite relation between the para-
meters for the velocity and temperature profiles.

Some of the assumptions made in the deduction of the equations
are not essential; for instance, the relation of viscosity to tem-
perature may be taken as pu = ctP or p = £(T) instead of u = T8, 1In
addition, it would be possible to take account of the deviation from
the turbulent profile in the sublayer in deducing the mean speed and
temperature,

In every case the problem amounts to integration of a system
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with unknown velocity and temperature at the axis and with two form
parameters. The equations are quasilinear in the derivatives.

Calculations for Re < lO5 have shown that the flow in a
channel can be divided into three parts: initial (curvature of pro-
files at the axis zero), main (form factors are the same and constant),
and precrisis (form factors camnot be constant ).

The most reliable results are obtained for the main part. More
precise calculations are needed for the other parts.

The method is based on the assumption that the boundary-layer
equations apply everywhere in the channel.

There is no especial doubt over this for the initial part (ex-
cept for X very small), s0 the calculation for this part may be refined
within the framework of boundary-layer theory; but there are great
difficulties over the precrisis part.

The longitudinal velocity increases very rapidly near the
crisis point (except in an area near the wall), so the corresponding
stresses must be incorporated in the equations of motion, although
it is difficult to say much about these for the case of turbulent flow
at present. The very rapid fall in pressure in this part requires a
correction for the effect of the pressure gradient on the velocity
profile in the sublayer*. 1In addition, it is hardly possible to con-
sider the pressure independent of the transverse coordinate near the

crisis point [6].

This all indicates that we should accept only with reserve the
conclusions derived by the usual methods of boundary-layer theory for
the precrisis part.

The length of this part is not very large relative to that of
the main part, so a refined calculation for it is hardly to be reckoned
of great practical value.

*¥Calculations show that dp/ﬁx has little effect on the velocity profile
in the sublayer in the main part.
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APPENDIX I

JUSTIFICATION FOR THE OPERATIONS ON SERTES IN CHAPTER IT

The term-by-term integration and differentiation in chapter II
can be Justified if we can show that the series after integration or
differentiation in this way converge uniformly.

Proof of uniform convergence is given by use of Weierstrass's
test.

The series

ue uu 2
1+ —+ — + ...=1+V +V + ...
® &
converges uniformly, because V = Vi = vicr < 1, so the sums of the series
of (2.48), (2.49), and (2.50) are respectively Il, I,, and Is.
The series for ung have the general term
® 5
1f@><1 ) +ni
= ® '—""‘l
e, (v) = w® N y .
For eny J < O
(J lalclal + 1)(s] + 2)o. (il + & - 1)
x| k!
. < ;| lg]-1
< (k+ 1)k + 2)..(k+ |3]-1) <(x + |5] - 1)
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g0 for 0<S y<1and ®/0 <1 we have
1l 0

i 51- N
o ke 131 -0 G- gD

Now for ® /@ < 1
v l/O

s

®
._l/
s (s ol - 0P PG -
0
k—m

so we can find an N such that for all k 2 N we have, by virtue of the
bounds to u and ® , that
1 0

k

. . 8y <2
. ~1 7 1
ui®g(k+|j|-1)l‘]| \1‘§5><1,

and so for k 2 N that
___§_k
1
h(ﬂ|<<Jl~ )
k 9’

which demonstrates the uniform convergence of the series for ui®J for
0=y=1,

Consider the series obtained in section 10 after differentiating

I 12, and I3 with respect to z., Zpy 35 T and ®O; here 0 sy =1

l,
and @ 2 ®1’ 80
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r ilyni ot S
(153) J"ul®‘]dy=u j dy<.]_,_l_= 1 P)
1 = 1J glal o 131 @ 3l
0 0 1 1

and so for k > 1 the general terms of the series for 311/321 (t =1,2,3)

will be
k Lot k-l 3(1-3) -l

g (k,d) _k 71 o 2 3) v, < x8 2 v

21 < — ——TTT =k 1 cr

Zq z_ @I 1

1 1
(1-3) .1 )
Now V <1, and ® is bounded, so the series §:® 2 kV 18
ler 1 1 ler
k

COﬁyergent, which implies uniform convergence for the series for
or,/9%z_.
ol

Consider now the series for BI(l’JZ/azk (k =2, 3, ) and for
sp(103) 7230
0
Uniform convergence in the series for 81(1’32/622 is demonstrated

by the observation that, apart from a bounded multiplier, the general
term is

DG

2
(iz + kz_+ 1)
z L

)

Ak(zg) =

and so
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(D]

la (=) <

Now z3/® < 1; the method used to demonstrate the convergence
of the series for u igd shows that the series for BI(l’JZ/az for z2 >0
converges uniformly. Uniform convergence of the series for 5(1’3)/32lF
is demonstrated in the same way.

Since ® 21 and V <1,
0 1

0<1-~—*<1-% <1,

1l min

®

i, i
so it is easy to show that the series for BI( ’32/323 and 31( ’32/5®o
converge uniformly.
There remain the series BIl/azk (t =1, 2,35 k=2,3 L)
and alt/BCb (t =1, 2, 3). The proofs in all cases are analogous. For
instance, the uniform convergence of 311/522 1s demonstrated as fol-

lows; this series consists of terms of the form 51(1’32/522.

Now

(1)3 )

v 21®de,

T

O e

so from the theorem on the mean
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I( 53) _ jyg aﬂafZl

in which ® is not dependent on zg, 80

. i . i L1
aI(lyJ) lzl 12’1 R 2
Bz2 @lJl(z i+ 1) @‘J‘ 1

since z >0and 82 ® , Also, V £V <1 and ®l

2 1 1 ler

the series for the 511/6z2 converge uniformly.

2

+ 1

is bounded,
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SO
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APPENDIX IT

ESTIMATE OF THE ERRORS ARTSING FROM APPROXIMATE CAICUTATION
OF THE INTEGRALS IN CHAPTERS II AND III.

Integrals I I and 1 chapter I1) and I I I and I
17 T2’ 3 ( ) W w’ e u®

(chapter II) were calculated on the assumption that power-law profiles
can be used right out to the wall; no account was taken of the dif-
ference between power-law and linear profiles. We show here that the
resulting errors are small. For simplicity we consider only the

case of adiabatic flow with the velocity profile given in the form

(see chapter III)

With allowance for the sublayer, the profile may be put in the
form

wH, H, 0SESH,

u_ HY, BSOS

We denote by I and I the integrals analogous to I and I
u uu

but calculated with allowance for the sublayer. We have

Hy 1
H;1+l

n-
= U J H & HOH + w I Ha =u (:
1 o S

6

n+1
'HS :> ,
n+ 1
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whence

Similarly we have

2 n+l
1’ -1 [1 - -(1-n)g ] .
wu uu 3 o}

Then I and T differ from I’ and I’
u uu u uu

smellness is not less than that of H .
5}

by quantities whose order of

The difference in the derivatives with respect to u is of the

1
same order, because

D 2
3u1 1
d1, 3T
w81 - 2 ()
aul Bul

In section 6 of chapter ITI we found that

n+ 1
157 1 j)
H = —

5 1 Re n+ I
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- 11

3 _n+i HE
St == s
on n+l

H. - ey
2 n+1 (n+1)
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APPENDIX ITT

Tables of Gas-Dynamic Functions for Air (k = 1.k)

0.00 1..0000 1.0000 | 0.0000 0.0000 } ® 0.0000
0.01 1.0000 0.9999 | 0.0158 0.0158 8562.105 0.0091

0.02 0.9999 0.9998 | 0.0315 0.0316 2135.793 0.0183
0.03 0.9999 0.9995 | 0.0L73 0.0473 9Lkg.116 0.027h
0.0k 0.9997 0.9990 | 0.0631 0.0631 530,107 0.0365

0.05 0.9996 0.9986 | 0.0738 0.0789 337.665 0.0457
0.06 0.999k 0.9979 | 0.09k5 0.094T 233.250 0.0548
0.07 0.9992 0.9971 { 0.1102 0.1105 170.354L 0.0639
0.08 0.9989 0.9963 | 0.1259 | 0.1263 129,53k 0.0731

0.09 0.9987 0.9953 | 0.1k15 0.1ko2 101.711 0.0822
0.10 0.9983 0.9942 | 0.1571 0.1580 81.753 0.091k
0.11 0.9980 0.9929 | 0.1726 0.1739 67.039 0.1005
0.12 0.9976 0.9916 | 0.1882 0.1897 55.876 0.1097
0.13 0.9972 0.9901 | 0.2036 0.2056 b7.220 0.1190
0.1k 0.9967 0.9886 | 0.2190 0.2216 Lho.35h 0.1280
0.15 0.9963 0.9870 | 0.234k 0.2375 3,833 0.1372
0.16 0.9957 0.9851 | 0.2koT 0.2535 30.333 0.1460
0.17 0.9952 0.9832 | 0.26L9 0.2695 26,61k 0.1560
0.18 0.99%6 0.9812 | 0.2801 0.2855 23.508 0.1650
0.19 0.99%0 0.9791 | 0.2952 0.3015 20.892 0.1740
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[Table continued]

M, T I g Y X M
0.20 0.9933 0.9768 | 0.3102 0.3176 18.665 0.1830
0.21 0.9927 0.9745 | 0.3252 0.3337 16.761 0.1920
0.22 0.9919 0.9720 | 0.3hk01 0.3499 15.110 0.2020
0.23 0.9912 0.9695 | 0.3549 0.3660 13.678 0.2109
0.24 0.990k4 0.9668 | 0.3696 0.3823 12.431 0.2202
0.25 0.9896 0.9640 | 0.38k2 0.3985 11.336 0.2290
0.26 0.9887 0.9611 | 0.3987 0.4148 10.366 0.2387
0.27 0.9879 0.9581 | 0.k131 0.4311 9,514 0.2480
0.28 0.9869 0.9550 | o.koth 0.4h75 8.753 0.2573
0.29 0.9860 0.9518 | 0.4L16 0.46L0 8.068 0.2670
0.30 0.9850 0.9485 | 0.4557 0.480k T.458 0.2760
0.31 0.9840 0.9451 | 0.469T7 0.4970 6.913 0.2850
0.32 0.9829 0.9415 | 0.4835 0.5135 6.416 0.2947
0.33 0.9819 0.9379 | 0.4972 0.5302 5.969 0.3040
0.3% | 0.9807 | 0.9342 | 0.5109 0.5469 5.565 0.313h
0.35 0.9796 0.9303 | 0.5243 0.5636 5,196 0.3228
0.36 0.978k 0.9265 | 0.537T 0.580k L. 861 0.3322
0.37 0.97T2 0.9224 | 0.5509 0.5973 L.556 0.3417
0.38 | 0.9759 0.9183 | 0.5640 0.61k4k2 L.276 0.3511
0.39 0.9747 0.9141 | 0.5769 0.6312 4,020 0.3606
0.40 0.9733 0.909T7 { 0.5897 0.6482 3.785 0.3701
0.41 0.9720 0.9053 | 0.602k 0.6654 3.602 0,3796
0.k2 0.9706 0.9008 | 0.61k9 0.6826 3.h17 0.3892
0.43 0.9692 0.8962 | 0.6272 0.6998 3,233 0,3987
0.4k 0.967T 0.8915 | 0.639k4 0.7172 3.048 0.4083

[Table continued next page]
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<55
.56
ST
.58
.59

S O O O O

0.60

0.61
0.62
0.63
0.64

0.65
0.66
0.67
0.68
0.69

0.9663

0.964T7
0.9632
0.9616
0.9600

0.9583
0.9567
0.9549
0.9532
0.9514

0.9496
0.947T7
0.9459
0.9439
0.9420

0.9400
0.9380
0.9359
0.9339
0.9317

0.9296
0.927k

0.9252
0.9229

0.9207

0.8868
0.8819
0.8770
0.8719
0.8668

.8616
.8563
.8509
.8h55
.8400

o O O O O

0.834k
0.8287
0.8230
0.8172
0.8112

0.8053

0.7992
0.7932
0.7870
0.7808

0.7T45
0.7681
0.7617

0.7553
0.7488

0.6515

0.6633

0.6750
0.6865
0.6979

0.7091
0.7201
0.7309
0.7416
0.7520

0.7623
0.772k
0.7823
0.7920
0.8015

0.8109
.8198
.8288

.8375
.8459

o

o O O

.8543
.8623
.8701

.8778
.8852

O O O O O

Y

0.73k46
0.7521
0.7697
0.787h
0.8052

0.8230
0.8409
0.8590
0.8771
0.8953

0.9136
0.9321
0.9506
0.9692
0.9880

1.0069
1.0258
1.04k49
1.06h1
1.08k42

1.1030
1.1226
1.1k23

1.1622
1.1822

175

X M
2.86L 0.4179
2.739 0.ko75
2.61L 0.4372
2.490 0.4468
2.365 0.4565
2.240 0.4663
2.154 0.4760
2.068 0.4858
1.981 0.4956
1.895 0.5054
1.809 0.5152
1.748 0.5251
1.687 0.5350
1.627 0.5450
1.566 0.5549
1.505 0.5649
1.h62 0.5750
1.419 0.5850
1.376 0.5951
1.333 0.6053
1.290 0.6154
1.260 0.6256
1.229 0.6359
1.199 0.6461
1.168 0.6565
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[Table continued]

M, T I g Y X M

0.70 0.9183 0.7h22 | 0.8924 1.2024 1.138 0.6668
0.71 0.9160 0.7356 | 0.8993 1.2227 1.117 0.6772
0.72 0.9136 0.7289 | 0.9061 1.2437 1.095 0.6876
0.73 0.9112 0.7221 | 0.9126 1.2637 1.074 0.6981
0.7k 0.9087 0.7154 | 0.9189 1.2845 1.052 0.7086
0.75 0.9063 0.7086 | 0.9250 1.3054 1.031 0.7192
0.76 0.9037 0.7017 | 0.93%08 1.3265 1.016 0.7298
0.77 0.9012 0.6948 | 0.936L 1.3478 1.001 0.T7404
0.78 0.8986 0.6878 | 0.9418 1.3692 n.987 0.7511
0.79 0.8960 0.6809 | 0.9469 1.3908 0.972 0.7619
0.80 0.8933 0.6738 | 0.9518 1.4126 0.957 0.7727
0.81 0.8907 0.6668 | 0.9565 1.4346 0.947 0.7835
0.82 0.8879 0.6597 | 0.9610 1.4567 0.937 0.794kL
0.83 0.8852 0.6526 | 0.9652 1.4790 0.928 0.8053
0.84 0.8824 0.6454 | 0.9691 1.5016 0.918 0.8163
0.85 0.8796 0.6382 | 0.9729 1.5243 0.908 0.8274
0.86 0.8767 0.6310 | 0.9764 1.5473 0.902 0.8384
0.87 0.8739 0.6238 | 0.9796 1.5704 0.896 0.8496
0.88 0.8709 0.6165 | 0.9826 1.5938 0.889 0.8608
0.89 0.8680 0.6092 | 0.9854 1.617h 0.883 0.8721
0.90 0.8650 0.6019 | 0.9879 1.6412 0.877 0.8833
0.91 0.8620 0.5946 | 0.9902 1.6652 0.87h4 0.8947
0.92 0.8589 0.5873 | 0.9923 1.6895 0.871 0.9062
0.93 0.8559 0.5800 | 0.9941 1.7140 0.868 0.9177
0.94 0.8527 0.5726 | 0.9957 1.7388 0.865 0.9292

[Table continued next page]
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[Table continued]

I I L L IO N

0.95 | 0.8496 0.5653 | 0.9970 1.7638 0.862 0.9409
0.96 | 0.8h6h 0.5579 | 0.9981 1.7891 0.861 0.9526
0.97 | 0.84k32 0.5505 | 0.9989 1.8146 0.860 0.96kh
0.98 | 0.83%99 0.5431 | 0.9953 1.84k0k4 0.859 0.9761
0.99 | 0.8367 0.5357 | 0.9999 1.8665 0.858 0.9880
1.00 | 0.8333 0.5283 | 1.0000 1.8929 0.857 1.0000
1.01 | 0.8300 0.5209 | 0.9999 1.9195 0.858 1.0120
1.02 | 0.8266 0.5135 | 0.9995 1.946L4 0.859 1.0241
1.03 | 0.8232 0.5061 | 0.9989 1.9737 0.859 1.0363
1.0k | 0.8197 0.4987 | 0.9980 2.0013 0.860 1.0486
1.05 | 0.8163 0.4913 | 0.9969 2.0291 0.861 1.0609
1.06 | 0.8127 0.4840 | 0.9957 2.0573 0.863 1.0733
1.07 | 0.8092 0.4766 | 0.9941 2.0858 0.865 1.0858
1.08 | 0.8056 0.4693 | 0.9924 2.1147 0.868 1.0985
1.09 | 0.8020 0.4619 | 0.9903 2.143%9 0.870 1.1111
1.10 | 0.7983 0.4546 | 0.9880 2.1734 0.872 1.1239
1.11 | 0.79h7 0.4473 | 0.9856 2.2034 0.875 1.1367
1.12 | 0.7909 0.4400 | 0.9829 2.2337 0.878 1.1496
1.13 |0.7872 0.4328 | 0.9800 2.2643 0.882 1.1627
1.14% 10.7834 0.h255 | 0.9768 2.2954 0.885 1.1758
1.15 | 0.7796 0.418% | 0.9735 2.3269 0.888 1.1890
1.16 {0.7757 0.4111 | 0.9698 2.3588 0.892 1.2023
1.17 }0.7719 0.4040 | 0.9659 2.3911 0.896 1.2157
1.18 |0.7679 0.3969 | 0.9620 2.4238 0.900 1.2292
1.19 1| o0.76k0 0.3898 1 0.957T 2.4570 0.90k 1.2428

[Table continued next page]
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[Table continued ]

M, T i g Y X M
1.20 | 0.7600 0.3827 | 0.9531 2.4906 0.908 1.2566
1.21 | 0.7560 0.3757 | 0.948k 2.52h7 0.913 1.2708
1.22 | 0.7519 0.3687 | 0.9435 2.5593 0.917 1.2843
1.23 ] 0.7478 0.3617 | 0.938h 2.59hh 0.922 1.2974
1.2k | 0.7h37 0.3548 | 0.9331 2.6300 0.926 1.3126
1.25 | 0.7396 0.34%79 | 0.9275 2.6660 0.931 1.3268
1.26 |} 0.7354 0.3411 | 0.9217 2.7026 0.93%6 1.3413
1.27 | 0.7312 0.3343 | 0.9159 2.7398 0.941 1.3558
1.28 | 0.7269 0.3275 | 0.9096 2.7775 0.947 1.3705
1.29 | 0.7227 0.3208 | 0.9033 2.8158 0.952 1.3853
1.30 | 0.7183 0.31k2 | 0.8969 2.8547 0.957 1.4002
1.31 | 0.7140 0.3075 | 0.8901 2.8941 0.963 1.4153
1.32 | 0.7096 0.3010 | 0.8831 2.2343 0.968 1.4305
1.33 | 0.7052 0.2945 | 0.8761 2.9750 0.97h 1.4458
1.34% | 0.7007 0.2880 | 0.8688 3.0164 0.979 1.k613
1.35 | 0.6962 0.2816 | 0.861k 3.0586 0.985 1.4769
1.36 | 0.6917 0.2753 | 0.8538 3.1013 0.991 1.4h927
1.37 | 0.6872 0.2690 | 0.8459 3.1448 0.997 1.5087
1.38 | 0.6826 0.2628 | 0.8380 3.1889 1.002 1.5248
1.39 | 0.6780 0.2566 | 0.8299 3.2340 1.008 1.5k10
1.k0 | 0.6733 0.2505 | 0.8216 3.2798 1.01k 1.5575
1.41 ] 0.6687 0.2khs5 | 0.8131 3.3263% 1.020 1.5741
1.42 | 0.6639 0.2385 | 0.80L6 3.3737 1.026 1.5909
1.43 | 0.6592 0.2326 | 0.7958 3.4219 1.033 1.6078
1.44 | 0.654k 0.2267 | 0.7869 3.4710 1.03%9 1.6250

[Table continued next page]
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[Table continued]

M, T I | g Y X M
1.k5 |0.6496 0.2209 | 0.7778 3.5211 1.045 1.6423
1.6 [0.64hT7 0.2152 | 0.768T7 3.5720 1.051 1.6598
1.47 10.6398 0.2095 | 0.7593 3.62L0 1,057 1.6776
1.48 ]0.6349 0.2040 ]0.7499 3.6768 1.06k4 1.6955
1.k9 {0.6300 0.1985 | O.7hoOL 3.7308 1.070 1.7137
1.50 [0.6250 0.1930 | 0.7307 3.7858 1.076 1.7321
1.51 |0.6200 0.1876 |0.7209 3.8418 1.082 1.7506
1.52 0.6149 0.1824 ]o.7110 3.8990 1.089 1.7694
1.53 ]0.6099 0.1771 | 0.7009 3.9574 1.095 1.7885
1.54 {0.604T 0.1720 | 0.6909 4.o172 1.102 1.8078
1.55 |0.5996 0.1669 | 0.6807 L., o778 1.108 1.8273
1.56 ]0.594k 0.1619 | 0.6703 4.1398 1.11k 1.8k471
1.57 }0.5802 0.1570 | 0.6599 b, 2034 1.121 1.8672
1.58 10.5839 0.1522 | 0.6Lok L.2680 1.127 1.8875
1.59 [0.5786 0.1474 [0.6389 4. 3345 1.134 1.9081
1.60 {0.5733 0.1k27 | 0.6282 4 L0220 1.1h0 1.9290
1.61 [0.5680 0.1381 | 0.6175 L 4713 1.1k7 1.9501
1.62 [0,5626 0.1336 | 0.6067 4 5hop 1.153 1.9716
1.63 [0.5572 0.1291 | 0.5958 4 61kh 1.160 1.9934
1.6k [0.5517 0.1248 ] 0.5850 4.,6887 1.166 2.0155
1.65 |0.546% 0.1205 | 0.57kO 4 76T 1.173 2.0380
1.66 [0.5407 0.1163 | 0.5630 L, 8uol 1.180 2.0607
1.67 |0.5352 0.1121 | 0.5520 4, 9221 1.186 2.0839
1.68 |0.5296 0.1081 | 0.5409 5.0037 1.193 2.1073
1.69 }0.5240 0.1041 | 0.5298 5.087T7 1.199 2.1313%
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[(Table continued]

M, u it g Y X M
1.70| 0.5183 0.100% | 0.5187 5.1735 1.206 2.1555
1.71 ) 0.5126 0.0965 | 0.5075 5.3167 1.213 2.1802
1.72 | 0.5069 0.0928 | 0.k4965 5.3520 1.219 2.2053
1.73 | 0.5012 0.0891 | 0.4852 5.44hg 1.226 2.2308
1.74 ] 0.495h 0.0856 | 0.b7h1 5.5403 1.232 2.2567
1.75 | 0.4896 0.0821 | 0.4630 5.6383 1,239 2.2831
1.76 | 0.4837 0.0787 | 0.k452 5.7390 1.246 2.3100
1.77 | 0.4779 0.0754 | o.hkk4oT 5.8427 1.252 2.337h
1.78 | 0.4719 0.0722 | 0.4296 5.9495 1.259 2.3653
1.79 | 0.4660 0.0691 | 0.4185 6.0593 1.265 2.3937
1.80 | 0.4600 0.0660 | 0.4075 6.1723 1.272 2. hoo7
1.81 [0.4540 0.0630 | 0.3965 6.2893 1.279 2.4523
1.82 | 0.4kT9 0.0602 | 0.3855 6.4091 1.285 2.4824
1.83 [0.4418 0.0573 | 0.3746 6.5335 1.292 2.513%2
1.84 {0.4357 0.0546 | 0.3638 6.6607 1.298 2.54k9
1.85 [0.4296 0.0520 | 0.3530 6.7934 1.305 2.5766
1.86 |0.423h 0.0kok | 0.3k423 6.9298 1.312 2.6094
1.87 {o.k1T2 0.0469 | 0.3316 7.0707 1.318 2.6429
1.88 10.4109 0.04hs5 | 0.3211 7.2162 1,325 2.6772
1.89 |o.kokTt 0.0422 | 0.3105 T.3673 1.331 2.7123
1.90 }0.3983 0.0399 | 0.3002 7.5243 1,338 2.7481
1.91 |0.3920 0.0377 | 0.2898 7.6858 1.344 2.7849
1.92 [0.3856 0.0356 | 0.2797 7.8540 1.351 2.8225
1.93 ]0.3792 0.0336 | 0.2695 8.0289 1.357 2.8612
1.94 10.3727 0.0316 | 0.2596 8.2098 1.364 2.9007
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.319
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5357
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218

179

X M
1.370 2.94h14
1.376 2.9831.
1.383 3.0301
1.389 3.0701
1.396 3.1155
1.k02 3.1622
1.408 3.210L
1.415 3.2603
1.421 3.3113
1.428 3.36h2
1.434 3.4190
1.44o 3.4759
1447 3.5343
1.453 3.5951
1.460 3.6583
1.466 3.7240
1.h72 3.7922
1.479 3.8633
1.485 3.9376
1.h92 4,0150
1.498 L, 0061
1.50L k1791
1.510 b 2702
1.517 L, 36L2
1.523 b 4633
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[Table continued]

M, T I g Y X M
2.20 0.1933 0.0032 0.0570 17.949 1.529 b, 56T7h
2.21 0.1860 0.0028 0.0520 18.7h2 1.535 L6778
2.22 0.1786 0.0024 0.0kT2 19.607 1.5k1 h. 7954
2.23 0.1712 0.0021 0.0k27 20.548 1.5h7 L.9201
2.24 0.1637 0.0018 0.0384 22.983 1.553 5.0533
2.25 0.1563 0.00151 0.0343 22,712 1.559 5.1958
2.26 0.1487 0.00127 0.0304 23.968 1.565 5.349k4
2.27 0.1hk12 0.00106 0.0268 25.361 1.571 5.5147
2.28 | 0.132%6 0.00087 0.0234 | 26.893 1.578 5.6940
2.29 0.1260 0.00071 0.020L 28.669 1.584 5.8891
2.30 0.1183 0.00057 0.0175 30.658 1.590 6.1033
2.31 0.1106 0.000k45 0.0148 32.937 1.596 6.3399
2.32 | 0.1029 | 0.00035 0.012k | 35,551 1.602 6.6008
2.33 0.0952 0.00027 0.0103 38.606 1.608 6.8935
2.3k4 0.087k4 0.00020 0.0083 Lo.233 1.61k T.2254
2.35 | 0.0796 | 0.0001k 0.0063 | 46.593 1.620 7.6053
2.36 | 0.0717 o.988-1o'LL 0.0051 | 51.91k 1.626 8.0450
2.37 | 0.0638 0.657-10"% | 0.0038 | 58.569 1.632 8.5619
2.38 | 0.0559 | 0.413-107% |o0.0028 |e7.24k | 1.638 | 9.1882
2.39 0.0480 0.2k 1074 0.0019 78.613 1.64h 9.962k
2,40 | 0.0k00 | 0.128-107% | 0.0012 9k. 703 1.650 | 10.957
2.41 | 0.0320 | 0.584-107 | 0.0007 |118.9% 1.656 | 12.306
2.h2 | 0.0239 | 0.211°107° | 0.0003 [159.65 1.661 | 1h.287
2.43 | 0.0158 o.u99°1o'6 0.0001 |okeo.16 1.667 | 17.631
2.4k | 0.0077 | 0.316°20°7 | 0.58-16%* hg9.16 1.672 | 25.367
2.9 | 0 0 0 r 1.678
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